Universität Siegen, Physikalische Chemie, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany.
Phys Chem Chem Phys. 2011 Nov 21;13(43):19632-40. doi: 10.1039/c1cp22429h. Epub 2011 Oct 12.
The relaxation dynamics of the indoline dye D149, a well-known sensitizer for photoelectrochemical solar cells, have been extensively characterized in various organic solvents by combining results from ultrafast pump-supercontinuum probe (PSCP) spectroscopy, transient UV-pump VIS-probe spectroscopy, time-correlated single-photon counting (TCSPC) measurements as well as steady-state absorption and fluorescence. In the steady-state spectra, the position of the absorption maximum shows only a weak solvent dependence, whereas the fluorescence Stokes shift Δν̃(F) correlates with solvent polarity. Photoexcitation at around 480 nm provides access to the S(1) state of D149 which exhibits solvation dynamics on characteristic timescales, as monitored by a red-shift of the stimulated emission and spectral development of the excited-state absorption in the transient PSCP spectra. In all cases, the spectral dynamics can be modeled by a global kinetic analysis using a time-dependent S(1) spectrum. The lifetime τ(1) of the S(1) state roughly correlates with polarity [acetonitrile (280 ps) < acetone (540 ps) < THF (720 ps) < chloroform (800 ps)], yet in alcohols it is much shorter [methanol (99 ps) < ethanol (178 ps) < acetonitrile (280 ps)], suggesting an appreciable influence of hydrogen bonding on the dynamics. A minor component with a characteristic time constant in the range 19-30 ps, readily observed in the PSCP spectra of D149 in acetonitrile and THF, is likely due to removal of vibrational excess energy from the S(1) state by collisions with solvent molecules. Additional weak fluorescence in the range 390-500 nm is observed upon excitation in the S(0)→S(2) band, which contains short-lived S(2)→S(0) emission of D149. Transient absorption signals after excitation at 377.5 nm yield an additional time constant in the subpicosecond range, representing the lifetime of the S(2) state. S(2) excitation also produces photoproducts.
吲哚染料 D149 是光电化学太阳能电池中一种著名的敏化剂,其弛豫动力学已在各种有机溶剂中通过超快泵浦-超连续谱探针 (PSCP) 光谱、瞬态紫外泵可见探针光谱、时间相关单光子计数 (TCSPC) 测量以及稳态吸收和荧光的组合结果得到了广泛的研究。在稳态光谱中,吸收最大值的位置仅表现出微弱的溶剂依赖性,而荧光斯托克斯位移Δν̃(F)与溶剂极性相关。在大约 480nm 的光激发下,可以进入 D149 的 S(1)态,该态在特征时间尺度上表现出溶剂化动力学,这可以通过受激发射的红移和瞬态 PSCP 光谱中激发态吸收的光谱发展来监测。在所有情况下,光谱动力学都可以通过使用时变 S(1)谱的全局动力学分析来建模。S(1)态的寿命τ(1)大致与极性相关[乙腈 (280ps) < 丙酮 (540ps) < 四氢呋喃 (720ps) < 氯仿 (800ps)],但在醇中则短得多[甲醇 (99ps) < 乙醇 (178ps) < 乙腈 (280ps)],表明氢键对动力学有明显影响。在 PSCP 光谱中,在乙腈和四氢呋喃中很容易观察到 D149 的 S(1)态的特征时间常数为 19-30ps 的较小组成部分,这可能是由于 S(1)态通过与溶剂分子的碰撞去除了振动过剩能量。在 S(0)→S(2)带激发时,观察到在 390-500nm 范围内的额外弱荧光,其中包含 D149 的短寿命 S(2)→S(0)发射。在 377.5nm 激发后,瞬态吸收信号产生了一个额外的亚皮秒时间常数,代表 S(2)态的寿命。S(2)激发还会产生光产物。