Suppr超能文献

基于阻抗数据的人工神经网络对咽高分辨率测压的分类。

Artificial neural network classification of pharyngeal high-resolution manometry with impedance data.

机构信息

Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.

出版信息

Laryngoscope. 2013 Mar;123(3):713-20. doi: 10.1002/lary.23655. Epub 2012 Oct 15.

Abstract

OBJECTIVES/HYPOTHESIS: To use classification algorithms to classify swallows as safe, penetration, or aspiration based on measurements obtained from pharyngeal high-resolution manometry (HRM) with impedance.

STUDY DESIGN

Case series evaluating new method of data analysis.

METHODS

Multilayer perceptron, an artificial neural network (ANN), was evaluated for its ability to classify swallows as safe, penetration, or aspiration. Data were collected from 25 disordered subjects swallowing 5- or 10-mL boluses. Following extraction of relevant parameters, a subset of the data was used to train the models, and the remaining swallows were then independently classified by the ANN.

RESULTS

A classification accuracy of 89.4 ± 2.4% was achieved when including all parameters. Including only manometry-related parameters yielded a classification accuracy of 85.0 ± 6.0%, whereas including only impedance-related parameters yielded a classification accuracy of 76.0 ± 4.9%. Receiver operating characteristic analysis yielded areas under the curve of 0.8912 for safe, 0.8187 for aspiration, and 0.8014 for penetration.

CONCLUSIONS

Classification models show high accuracy in classifying swallows from dysphagic patients as safe or unsafe. HRM-impedance with ANN represents one method that could be used clinically to screen for patients at risk for penetration or aspiration.

摘要

目的/假设:使用分类算法根据咽高分辨率测压(HRM)与阻抗测量值将吞咽物分类为安全、穿透或吸入。

研究设计

评估新数据分析方法的病例系列研究。

方法

多层感知机,一种人工神经网络(ANN),用于评估其将吞咽物分类为安全、穿透或吸入的能力。从 25 名吞咽 5 或 10 毫升团块的紊乱受试者中收集数据。提取相关参数后,使用数据子集训练模型,然后由 ANN 独立对其余吞咽物进行分类。

结果

包括所有参数时,分类准确率为 89.4 ± 2.4%。仅包括测压相关参数时,分类准确率为 85.0 ± 6.0%,而仅包括阻抗相关参数时,分类准确率为 76.0 ± 4.9%。受试者工作特征分析得到安全的曲线下面积为 0.8912,吸入的为 0.8187,穿透的为 0.8014。

结论

分类模型在将吞咽困难患者的吞咽物分类为安全或不安全方面具有很高的准确性。HRM-阻抗与 ANN 代表了一种可用于临床筛查穿透或吸入风险患者的方法。

相似文献

1
Artificial neural network classification of pharyngeal high-resolution manometry with impedance data.
Laryngoscope. 2013 Mar;123(3):713-20. doi: 10.1002/lary.23655. Epub 2012 Oct 15.
2
Application of classification models to pharyngeal high-resolution manometry.
J Speech Lang Hear Res. 2012 Jun;55(3):892-902. doi: 10.1044/1092-4388(2011/11-0088). Epub 2012 Jan 9.
3
Three-dimensional analysis of pharyngeal high-resolution manometry data.
Laryngoscope. 2013 Jul;123(7):1746-53. doi: 10.1002/lary.23987. Epub 2013 Feb 16.
4
Classification of high-resolution manometry data according to videofluoroscopic parameters using pattern recognition.
Otolaryngol Head Neck Surg. 2013 Jul;149(1):126-33. doi: 10.1177/0194599813489506. Epub 2013 Jun 1.
8
A novel method for the nonradiological assessment of ineffective swallowing.
Am J Gastroenterol. 2011 Oct;106(10):1796-802. doi: 10.1038/ajg.2011.143. Epub 2011 May 10.
9
Reproducibility and agreement of pharyngeal automated impedance manometry with videofluoroscopy.
Clin Gastroenterol Hepatol. 2011 Oct;9(10):862-7. doi: 10.1016/j.cgh.2011.05.026. Epub 2011 Jun 6.
10
Calculation of upper esophageal sphincter restitution time from high resolution manometry data using machine learning.
Physiol Behav. 2016 Oct 15;165:413-24. doi: 10.1016/j.physbeh.2016.08.005. Epub 2016 Aug 10.

引用本文的文献

1
Artificial intelligence in the diagnosis and management of dysphagia: a scoping review.
Codas. 2025 Aug 8;37(4):e20240305. doi: 10.1590/2317-1782/e20240305en. eCollection 2025.
2
Digital health technologies in swallowing care from screening to rehabilitation: A narrative review.
Auris Nasus Larynx. 2025 May 21;52(4):319-326. doi: 10.1016/j.anl.2025.05.002.
3
New developments in the application of artificial intelligence to laryngology.
Curr Opin Otolaryngol Head Neck Surg. 2024 Dec 1;32(6):391-397. doi: 10.1097/MOO.0000000000000999. Epub 2024 Jul 24.
4
Dysphagia in Parkinson Disease: Part I - Pathophysiology and Diagnostic Practices.
Curr Phys Med Rehabil Rep. 2023 Jun;11(2):176-187. doi: 10.1007/s40141-023-00392-9. Epub 2023 Mar 28.
5
Smart Vehicle Path Planning Based on Modified PRM Algorithm.
Sensors (Basel). 2022 Aug 31;22(17):6581. doi: 10.3390/s22176581.
6
8
Artificial Intelligence Applied to Gastrointestinal Diagnostics: A Review.
J Pediatr Gastroenterol Nutr. 2020 Jan;70(1):4-11. doi: 10.1097/MPG.0000000000002507.
10
A systematic review of current methodology of high resolution pharyngeal manometry with and without impedance.
Eur Arch Otorhinolaryngol. 2019 Mar;276(3):631-645. doi: 10.1007/s00405-018-5240-9. Epub 2018 Dec 13.

本文引用的文献

1
Application of classification models to pharyngeal high-resolution manometry.
J Speech Lang Hear Res. 2012 Jun;55(3):892-902. doi: 10.1044/1092-4388(2011/11-0088). Epub 2012 Jan 9.
2
Reproducibility and agreement of pharyngeal automated impedance manometry with videofluoroscopy.
Clin Gastroenterol Hepatol. 2011 Oct;9(10):862-7. doi: 10.1016/j.cgh.2011.05.026. Epub 2011 Jun 6.
3
A method to objectively assess swallow function in adults with suspected aspiration.
Gastroenterology. 2011 May;140(5):1454-63. doi: 10.1053/j.gastro.2011.02.051. Epub 2011 Feb 24.
4
Automated analysis of pharyngeal pressure data obtained with high-resolution manometry.
Dysphagia. 2011 Mar;26(1):3-12. doi: 10.1007/s00455-010-9320-2. Epub 2010 Dec 14.
5
Pharyngeal flow interval: a novel impedance-based parameter correlating with aspiration.
Neurogastroenterol Motil. 2011 Jun;23(6):551-e206. doi: 10.1111/j.1365-2982.2010.01634.x. Epub 2010 Dec 10.
6
Pharyngeal swallow adaptations to bolus volume measured with high-resolution manometry.
Laryngoscope. 2010 Dec;120(12):2367-73. doi: 10.1002/lary.21150.
8
Impaired opening of the upper esophageal sphincter in patients with medullary infarctions.
Dysphagia. 2009 Jun;24(2):238-45. doi: 10.1007/s00455-008-9179-7. Epub 2008 Sep 13.
9
Deglutitive upper esophageal sphincter relaxation: a study of 75 volunteer subjects using solid-state high-resolution manometry.
Am J Physiol Gastrointest Liver Physiol. 2006 Sep;291(3):G525-31. doi: 10.1152/ajpgi.00081.2006. Epub 2006 Apr 27.
10
Evaluation of artificial neural networks in the classification of primary oesophageal dysmotility.
Scand J Gastroenterol. 2006 Mar;41(3):257-63. doi: 10.1080/00365520500234030.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验