Suppr超能文献

水溶液中 DNA-明胶相互作用过程中的凝聚、复杂共凝聚和过电荷。

Condensation, complex coacervation, and overcharging during DNA-gelatin interactions in aqueous solutions.

机构信息

Polymer and Biophysics Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.

出版信息

J Phys Chem B. 2012 Nov 8;116(44):13192-9. doi: 10.1021/jp3073798. Epub 2012 Oct 26.

Abstract

Interaction between DNA (effective hydrodynamic radius, R(DNA) ≈ 140 nm) and Gelatin A (GA) (effective hydrodynamic radius, R(GA) ≈ 55 nm) with charge ratio (DNA:GA = 16:1) and persistence length ratio (5:1) was studied by using fixed DNA concentration (5 × 10(-3) % (w/v)) and varying GA concentration (C(GA) = 0-0.25% (w/v)). Experimentally, three interesting regions of interaction were observed from dynamic light scattering, turbidity, zeta potential, and viscosity data: (i) C(GA) < 0.05% (w/v), GA binds to DNA forming soluble complexes of size R(complex) ≈ 60 nm < R(DNA) (primary binding causing condensation); (ii) 0.05% < C(GA) < 0.1% (w/v), R(complex) ≈ 60 to 180 nm was observed up to charge-neutralization point (secondary binding); and (iii) C(GA) > 0.1% (w/v) showed interesting overcharging behavior of DNA-GA complexes, followed by liquid-liquid phase separation (complex coacervation). Aforesaid regions of interaction were further examined theoretically by modeling the problem using electrostatic and van der Waals interaction potentials treating GA molecules as counterions to DNA macroion. Region (i) was explained on the basis of electrostatic screening, followed by reduction in persistence length, which resulted in condensation of DNA-GA complex. In region (ii), the dominance of van der Waals forces led to the formation of large soluble complexes through selective binding. This was possible due to closer proximity between GA and DNA-GA complexes and the absence of strong electrostatic forces. In region (iii), these oversized and overcharged complexes coarsened, leading to complex coacervation. Here the interaction energy profile showed that a greater number of counterions was required over and above the usual charge neutralization requirement for low-energy configurations to be achieved.

摘要

DNA(有效流体力学半径,R(DNA)≈140nm)与明胶 A(GA)(有效流体力学半径,R(GA)≈55nm)之间的相互作用,其电荷比(DNA:GA=16:1)和持续长度比(5:1),通过使用固定的 DNA 浓度(5×10(-3)%(w/v))和变化的 GA 浓度(C(GA)=0-0.25%(w/v))进行研究。实验中,从动态光散射、浊度、动电电位和粘度数据中观察到三个有趣的相互作用区域:(i)C(GA)<0.05%(w/v),GA 与 DNA 结合形成尺寸为 R(complex)≈60nm<R(DNA)的可溶性复合物(初级结合导致缩合);(ii)0.05%<C(GA)<0.1%(w/v),在达到电荷中和点时观察到 R(complex)≈60 至 180nm(二级结合);(iii)C(GA)>0.1%(w/v)显示出 DNA-GA 复合物的有趣过荷行为,随后发生液-液相分离(复合物凝聚)。通过使用静电和范德华相互作用势对该问题进行建模,将 GA 分子视为 DNA 大分子的抗衡离子,对上述相互作用区域进行了进一步的理论研究。区域(i)是基于静电屏蔽来解释的,随后是持续长度的降低,导致 DNA-GA 复合物的缩合。在区域(ii)中,范德华力的主导作用导致通过选择性结合形成大的可溶性复合物。这是可能的,因为 GA 与 DNA-GA 复合物之间的距离更近,并且不存在强静电作用力。在区域(iii)中,这些过大和过荷的复合物变粗,导致复合物凝聚。在这里,相互作用能量曲线显示,为了达到低能构型,需要比通常的电荷中和要求更多的抗衡离子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验