Polymer and Biophysics Laboratory, School of Physical Sciences, India.
Phys Chem Chem Phys. 2013 Aug 7;15(29):12262-73. doi: 10.1039/c3cp51246k. Epub 2013 Jun 17.
The effect of persistence length on the intermolecular binding of DNA (200 bp, persistence length l(p) = 50 nm, polyanion) with three proteins, gelatin B (GB) (l(p) = 2 nm, polyampholyte chain), bovine serum albumin (BSA) (l(p) = 7 nm, polyampholyte colloid), gelatin A (GA) (l(p) = 10 nm, polyampholyte chain), and a polysaccharide chitosan (l(p) = 17 nm, polycation), was investigated in aqueous and in 1-methyl-3-octyl imidazolium chloride ionic liquid ([C8mim][Cl]) solutions. In DNA-GB and DNA-BSA solutions complexation primarily arises from surface patch binding whereas DNA-chitosan and DNA-GA binding was predominantly governed by electrostatic forces. These occurred at well defined pH values: (i) at pHc associative interactions ensued and soluble complexes were formed, (ii) at pHΦ soluble complexes coalesced to give rise to liquid-liquid phase separation (coacervation) and (iii) at pH(prep) formation of large insoluble complexes drove the solution towards liquid-solid phase separation. A universal phase diagram encapsulating the aforesaid interactions can be made using the persistence length of polyion as an independent variable. DNA formed overcharged intermolecular complexes with all these polyions when the polyion concentration was more than the concentration required to produce charge neutralized complexes (disproportionate binding). In IL solutions maximum binding occurred when 0.075 < [IL] < 0.10% (w/v) and the effect of overcharging was substantially screened. The extent of overcharge was a monotonous increasing function of the polyion persistence length. Results clearly revealed that DNA-polyion binding was hierarchical in polyion concentration and persistence length. Overcharging of the DNA-polyion complex was found to be ubiquitous for the polyions used in the present study.
DNA(200bp,持久性长度 l(p)=50nm,多阴离子)与三种蛋白质(明胶 B(GB)(l(p)=2nm,两性聚电解质链)、牛血清白蛋白(BSA)(l(p)=7nm,两性聚电解质胶体)、明胶 A(GA)(l(p)=10nm,两性聚电解质链)和多糖壳聚糖(l(p)=17nm,聚阳离子)之间的分子间结合的持久性长度的影响在水溶液和 1-甲基-3-辛基咪唑氯化物离子液体 ([C8mim][Cl]) 溶液中进行了研究。在 DNA-GB 和 DNA-BSA 溶液中,复合物的形成主要来自于表面斑块结合,而 DNA-壳聚糖和 DNA-GA 的结合主要受静电力的控制。这些反应发生在明确的 pH 值下:(i)在 pHc 时,发生了缔合相互作用,形成了可溶性复合物;(ii)在 pHΦ 时,可溶性复合物凝聚,导致液-液相分离(凝聚);(iii)在 pH(prep) 时,大的不溶性复合物的形成使溶液向液-固相分离。可以使用聚离子的持久性长度作为独立变量,制作一个包含上述相互作用的通用相图。当聚离子的浓度超过产生电荷中和复合物所需的浓度(不成比例结合)时,DNA 与所有这些聚离子形成带过多电荷的分子间复合物。在 IL 溶液中,当 [IL] 在 0.075<[IL]<0.10%(w/v)时,最大结合发生,并且过度充电的影响被大大屏蔽。过度充电的程度是聚离子持久性长度的单调递增函数。结果清楚地表明,DNA-聚离子的结合在聚离子浓度和持久性长度上是分级的。在本研究中使用的聚离子中,发现 DNA-聚离子复合物的过度充电是普遍存在的。