Suppr超能文献

局部调节囊性纤维化跨膜电导调节因子:细胞骨架和区室化的 cAMP 信号转导。

Local modulation of cystic fibrosis conductance regulator: cytoskeleton and compartmentalized cAMP signalling.

机构信息

Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK.

出版信息

Br J Pharmacol. 2013 May;169(1):1-9. doi: 10.1111/bph.12017.

Abstract

The cystic fibrosis conductance regulator (CFTR) is a cAMP-regulated Cl(-) channel expressed predominantly at the apical membrane of secreting epithelial cells. Mutations in the CFTR gene lead to cystic fibrosis, the most frequent genetic disease in the Caucasian population. The most common mutation, a deletion of phenylalanine at position 508 (F508del), impairs CFTR folding and chloride channel function. Although an intense effort is under way to identify compounds that target the F508del CFTR structural defect and promote its expression and stability at the plasma membrane, so far their clinical efficacy has proven to be poor, highlighting the necessity to better understand the molecular mechanism of CFTR regulation and of the pathogenesis of the disease. Accumulating evidence suggests that the inclusion of the CFTR in macromolecular complexes and its interaction with the cortical cytoskeleton may play a key role in fine-tuning the regulation of channel function. Here we review some recent findings that support a critical role for protein-protein interactions involving CFTR and for the cytoskeleton in promoting local control of channel activity. These findings indicate that compounds that rescue and stabilize CFTR at the apical membrane may not be sufficient to restore its function unless the appropriate intracellular milieu is also reconstituted.

摘要

囊性纤维化跨膜电导调节因子(CFTR)是一种 cAMP 调节的氯离子通道,主要表达于分泌上皮细胞的顶端膜。CFTR 基因突变导致囊性纤维化,这是白种人群中最常见的遗传疾病。最常见的突变是第 508 位苯丙氨酸缺失(F508del),它会损害 CFTR 的折叠和氯离子通道功能。尽管目前正在努力寻找针对 F508del CFTR 结构缺陷并促进其在质膜表达和稳定性的化合物,但到目前为止,它们的临床疗效证明并不理想,这突出表明需要更好地了解 CFTR 调节和疾病发病机制的分子机制。越来越多的证据表明,CFTR 包含在大分子复合物中,并且其与皮质细胞骨架的相互作用可能在精细调节通道功能的调节中发挥关键作用。本文综述了一些最近的发现,这些发现支持涉及 CFTR 的蛋白质-蛋白质相互作用和细胞骨架在促进局部通道活性控制中的关键作用。这些发现表明,恢复和稳定 CFTR 在顶端膜上的化合物可能不足以恢复其功能,除非还重建适当的细胞内环境。

相似文献

4
Cystic fibrosis transmembrane conductance regulator (CFTR) and renal function.
Wien Klin Wochenschr. 1997 Jun 27;109(12-13):457-64.
5
Resveratrol rescues cAMP-dependent anionic transport in the cystic fibrosis pancreatic cell line CFPAC1.
Br J Pharmacol. 2011 Jun;163(4):876-86. doi: 10.1111/j.1476-5381.2011.01289.x.
7
Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.
Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):6082-7. doi: 10.1073/pnas.0902661107. Epub 2010 Mar 15.
8
Trimethylangelicin promotes the functional rescue of mutant F508del CFTR protein in cystic fibrosis airway cells.
Am J Physiol Lung Cell Mol Physiol. 2014 Jul 1;307(1):L48-61. doi: 10.1152/ajplung.00305.2013. Epub 2014 May 9.
9
Targeting F508del-CFTR to develop rational new therapies for cystic fibrosis.
Acta Pharmacol Sin. 2011 Jun;32(6):693-701. doi: 10.1038/aps.2011.71.

引用本文的文献

1
CFTR as a therapeutic target for severe lung infection.
Am J Physiol Lung Cell Mol Physiol. 2025 Feb 1;328(2):L229-L238. doi: 10.1152/ajplung.00289.2024. Epub 2025 Jan 8.
2
A Proteomic Survey of the Cystic Fibrosis Transmembrane Conductance Regulator Surfaceome.
Int J Mol Sci. 2023 Jul 14;24(14):11457. doi: 10.3390/ijms241411457.
3
CFTR, Cell Junctions and the Cytoskeleton.
Int J Mol Sci. 2022 Feb 28;23(5):2688. doi: 10.3390/ijms23052688.
4
Dysregulation of ion transport in the lung epithelium infected with SARS-CoV-2.
Am J Physiol Lung Cell Mol Physiol. 2021 Jun 1;320(6):L1183-L1185. doi: 10.1152/ajplung.00170.2021. Epub 2021 Apr 21.
5
SARS-CoV-2 may hijack GPCR signaling pathways to dysregulate lung ion and fluid transport.
Am J Physiol Lung Cell Mol Physiol. 2021 Mar 1;320(3):L430-L435. doi: 10.1152/ajplung.00499.2020. Epub 2021 Jan 12.
6
Tobacco Smoke Constituents Trigger Cytoplasmic Calcium Release.
Appl In Vitro Toxicol. 2017 Jun 1;3(2):193-198. doi: 10.1089/aivt.2016.0039.
8
CFTR channel in oocytes from Xenopus laevis and its regulation by xShroom1 protein.
Pflugers Arch. 2016 May;468(5):871-80. doi: 10.1007/s00424-016-1800-2. Epub 2016 Feb 18.
10
CFTR and sphingolipids mediate hypoxic pulmonary vasoconstriction.
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):E1614-23. doi: 10.1073/pnas.1421190112. Epub 2015 Mar 17.

本文引用的文献

1
State of progress in treating cystic fibrosis respiratory disease.
BMC Med. 2012 Aug 10;10:88. doi: 10.1186/1741-7015-10-88.
3
CFTR: folding, misfolding and correcting the ΔF508 conformational defect.
Trends Mol Med. 2012 Feb;18(2):81-91. doi: 10.1016/j.molmed.2011.10.003. Epub 2011 Dec 3.
4
Spatial control of cAMP signalling in health and disease.
Curr Opin Pharmacol. 2011 Dec;11(6):649-55. doi: 10.1016/j.coph.2011.09.014. Epub 2011 Oct 13.
5
Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809.
Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18843-8. doi: 10.1073/pnas.1105787108. Epub 2011 Oct 5.
6
Pharmacological therapy for cystic fibrosis: from bench to bedside.
J Cyst Fibros. 2011 Jun;10 Suppl 2:S129-45. doi: 10.1016/S1569-1993(11)60018-0.
7
Targeting F508del-CFTR to develop rational new therapies for cystic fibrosis.
Acta Pharmacol Sin. 2011 Jun;32(6):693-701. doi: 10.1038/aps.2011.71.
8
Current status and future directions of gene and cell therapy for cystic fibrosis.
BioDrugs. 2011 Apr 1;25(2):77-88. doi: 10.2165/11586960-000000000-00000.
9
New horizons in the treatment of cystic fibrosis.
Br J Pharmacol. 2011 May;163(1):173-83. doi: 10.1111/j.1476-5381.2010.01137.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验