Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, Nevada 89512, USA.
Astrobiology. 2012 Nov;12(11):1078-86. doi: 10.1089/ast.2012.0858. Epub 2012 Oct 19.
Understanding the behavior of proteins under freezing conditions is vital for detecting and locating extraterrestrial life in cold environments, such as those found on Mars and the icy moons of Jupiter and Saturn. This review highlights the importance of studying psychrophilic "cold-shock" proteins, a topic that has yet to be explored. A strategy for analyzing the psychrophilic RNA helicase protein CsdA (Psyc_1082) from Psychrobacter arcticus 273-4 as a key protein for life under freezing temperatures is proposed. The experimental model presented here was developed based on previous data from investigations of Escherichia coli, P. arcticus 273-4, and RNA helicases. P. arcticus 273-4 is considered a model for life in freezing environments. It is capable of growing in temperatures as cold as -10°C by using physiological strategies to survive not only in freezing temperatures but also under low-water-activity and limited-nutrient-availability conditions. The analyses of its genome, transcriptome, and proteome revealed specific adaptations that allow it to inhabit freezing environments by adopting a slow metabolic strategy rather than a cellular dormancy state. During growth at subzero temperatures, P. arcticus 273-4 genes related to energy metabolism and carbon substrate incorporation are downregulated, and genes for maintenance of membranes, cell walls, and nucleic acid motion are upregulated. At -6°C, P. arcticus 273-4 does not upregulate the expression of either RNA or protein chaperones; however, it upregulates the expression of its cold-shock induced DEAD-box RNA helicase protein A (CsdA - Psyc_1082). CsdA - Psyc_1082 was investigated as a key helper protein for sustaining life in subzero conditions. Proving CsdA - Psyc_1082 to be functional as a key protein for life under freezing temperatures may extend the known minimum growth temperature of a mesophilic cell and provide key information about the mechanisms that underlie cold-induced biological systems in icy worlds.
了解蛋白质在冷冻条件下的行为对于在寒冷环境中(如火星、木星和土星的冰冷卫星上)检测和定位外星生命至关重要。本文强调了研究嗜冷“冷休克”蛋白的重要性,这是一个尚未被探索的主题。提出了一种分析来自北极杆菌 273-4 的嗜冷 RNA 解旋酶蛋白 CsdA(Psyc_1082)的策略,该蛋白是冷冻温度下生命的关键蛋白。这里提出的实验模型是基于以前对大肠杆菌、北极杆菌 273-4 和 RNA 解旋酶的研究数据开发的。北极杆菌 273-4 被认为是冷冻环境中生命的模型。它能够在低至-10°C 的温度下生长,通过使用生理策略来生存,不仅在冷冻温度下,而且在低水活度和有限营养可用性条件下也能生存。对其基因组、转录组和蛋白质组的分析揭示了特定的适应性,使其能够通过采用缓慢的代谢策略而不是细胞休眠状态来栖息在冷冻环境中。在亚零温度下生长时,北极杆菌 273-4 与能量代谢和碳底物掺入相关的基因下调,而与膜、细胞壁和核酸运动维持相关的基因上调。在-6°C 时,北极杆菌 273-4 既不会上调 RNA 或蛋白质伴侣的表达,也不会上调其冷休克诱导的 DEAD 盒 RNA 解旋酶蛋白 A(CsdA-Psych_1082)的表达。CsdA-Psych_1082 被研究为维持亚零条件下生命的关键辅助蛋白。证明 CsdA-Psych_1082 作为冷冻温度下生命的关键蛋白是功能性的,可能会扩展已知的中温细胞最小生长温度,并提供有关冰冷世界中冷诱导生物系统基础机制的关键信息。