Department of Bioengineering, University of California San Diego, La Jolla, CA92093-0412, USA.
J Appl Physiol (1985). 2012 Dec 15;113(12):1884-901. doi: 10.1152/japplphysiol.01514.2011. Epub 2012 Oct 18.
Extensive measurements of the parts list of human skeletal muscle through transcriptomics and other phenotypic assays offer the opportunity to reconstruct detailed functional models. Through integration of vast amounts of data present in databases and extant knowledge of muscle function combined with robust analyses that include a clustering approach, we present both a protein parts list and network models for skeletal muscle function. The model comprises the four key functional family networks that coexist within a functional space; namely, excitation-activation family (forward pathways that transmit a motoneuronal command signal into the spatial volume of the cell and then use Ca(2+) fluxes to bind Ca(2+) to troponin C sites on F-actin filaments, plus transmembrane pumps that maintain transmission capacity); mechanical transmission family (a sophisticated three-dimensional mechanical apparatus that bidirectionally couples the millions of actin-myosin nanomotors with external axial tensile forces at insertion sites); metabolic and bioenergetics family (pathways that supply energy for the skeletal muscle function under widely varying demands and provide for other cellular processes); and signaling-production family (which represents various sensing, signal transduction, and nuclear infrastructure that controls the turn over and structural integrity and regulates the maintenance, regeneration, and remodeling of the muscle). Within each family, we identify subfamilies that function as a unit through analysis of large-scale transcription profiles of muscle and other tissues. This comprehensive network model provides a framework for exploring functional mechanisms of the skeletal muscle in normal and pathophysiology, as well as for quantitative modeling.
通过转录组学和其他表型分析对人体骨骼肌的零件清单进行广泛测量,为重建详细的功能模型提供了机会。通过整合数据库中大量存在的数据和现有的肌肉功能知识,并结合稳健的分析,包括聚类方法,我们为骨骼肌功能提供了蛋白质零件清单和网络模型。该模型包含了在功能空间中共存的四个关键功能家族网络;即,兴奋激活家族(将运动神经元命令信号传输到细胞的空间体积中,并使用 Ca(2+)流将 Ca(2+)结合到 F-肌动蛋白丝上的肌钙蛋白 C 位点的正向途径,加上维持传输能力的跨膜泵);机械传递家族(一种复杂的三维机械装置,可双向将数百万个肌动球蛋白纳米马达与插入部位的轴向拉伸力耦合);代谢和生物能学家族(在广泛变化的需求下为骨骼肌功能提供能量的途径,并为其他细胞过程提供能量);以及信号产生家族(代表各种感应、信号转导和核基础设施,控制肌肉的周转和结构完整性,并调节肌肉的维持、再生和重塑)。在每个家族中,我们通过分析肌肉和其他组织的大规模转录谱来识别作为一个单元起作用的亚家族。这个综合的网络模型为探索骨骼肌在正常和病理生理学中的功能机制以及定量建模提供了一个框架。