Suppr超能文献

细丝顺应性影响骨骼肌细丝的协同激活和力产生的动力学。

Filament compliance influences cooperative activation of thin filaments and the dynamics of force production in skeletal muscle.

机构信息

Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America.

出版信息

PLoS Comput Biol. 2012;8(5):e1002506. doi: 10.1371/journal.pcbi.1002506. Epub 2012 May 10.

Abstract

Striated muscle contraction is a highly cooperative process initiated by Ca²⁺ binding to the troponin complex, which leads to tropomyosin movement and myosin cross-bridge (XB) formation along thin filaments. Experimental and computational studies suggest skeletal muscle fiber activation is greatly augmented by cooperative interactions between neighboring thin filament regulatory units (RU-RU cooperativity; 1 RU = 7 actin monomers+1 troponin complex+1 tropomyosin molecule). XB binding can also amplify thin filament activation through interactions with RUs (XB-RU cooperativity). Because these interactions occur with a temporal order, they can be considered kinetic forms of cooperativity. Our previous spatially-explicit models illustrated that mechanical forms of cooperativity also exist, arising from XB-induced XB binding (XB-XB cooperativity). These mechanical and kinetic forms of cooperativity are likely coordinated during muscle contraction, but the relative contribution from each of these mechanisms is difficult to separate experimentally. To investigate these contributions we built a multi-filament model of the half sarcomere, allowing RU activation kinetics to vary with the state of neighboring RUs or XBs. Simulations suggest Ca²⁺ binding to troponin activates a thin filament distance spanning 9 to 11 actins and coupled RU-RU interactions dominate the cooperative force response in skeletal muscle, consistent with measurements from rabbit psoas fibers. XB binding was critical for stabilizing thin filament activation, particularly at submaximal Ca²⁺ levels, even though XB-RU cooperativity amplified force less than RU-RU cooperativity. Similar to previous studies, XB-XB cooperativity scaled inversely with lattice stiffness, leading to slower rates of force development as stiffness decreased. Including RU-RU and XB-RU cooperativity in this model resulted in the novel prediction that the force-[Ca²⁺] relationship can vary due to filament and XB compliance. Simulations also suggest kinetic forms of cooperativity occur rapidly and dominate early to get activation, while mechanical forms of cooperativity act more slowly, augmenting XB binding as force continues to develop.

摘要

横纹肌收缩是一个高度协作的过程,由 Ca²⁺与肌钙蛋白复合物结合引发,导致肌动蛋白丝上的肌球蛋白横桥(XB)形成和原肌球蛋白移动。实验和计算研究表明,骨骼肌纤维的激活通过相邻细肌丝调节单元(RU-RU 协同作用;1RU=7 个肌动蛋白单体+1 个肌钙蛋白复合物+1 个肌球蛋白分子)之间的协同相互作用大大增强。XB 与 RU 的相互作用(XB-RU 协同作用)也可以通过放大细肌丝的激活来放大力。由于这些相互作用具有时间顺序,因此可以将它们视为协同作用的动力学形式。我们之前的空间显式模型表明,机械协同作用也存在,源自 XB 诱导的 XB 结合(XB-XB 协同作用)。在肌肉收缩过程中,这些机械和动力学形式的协同作用可能是协调的,但每种机制的相对贡献很难从实验中分离出来。为了研究这些贡献,我们构建了一个半肌节的多细丝模型,允许 RU 激活动力学随相邻 RU 或 XB 的状态而变化。模拟表明,肌钙蛋白与 Ca²⁺的结合激活了跨越 9 到 11 个肌动蛋白的细肌丝距离,并且在骨骼肌中,RU-RU 相互作用是协同力响应的主要驱动力,这与来自兔腰大肌纤维的测量结果一致。XB 结合对于稳定细肌丝的激活至关重要,特别是在亚最大 Ca²⁺水平下,尽管 XB-RU 协同作用放大力的能力小于 RU-RU 协同作用。与之前的研究类似,XB-XB 协同作用与晶格刚度成反比,导致晶格刚度降低时力发展的速率变慢。在该模型中包括 RU-RU 和 XB-RU 协同作用会产生新的预测,即由于细丝和 XB 的顺应性,力-[Ca²⁺]关系可能会发生变化。模拟还表明,动力学形式的协同作用发生得很快,在早期占据主导地位以获得激活,而机械形式的协同作用作用较慢,随着力的持续发展,增强 XB 的结合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验