Department of Medicine, New York Medical College, Valhalla, New York 10595, USA.
Antioxid Redox Signal. 2013 Jul 20;19(3):211-30. doi: 10.1089/ars.2012.4768. Epub 2013 Jan 4.
We examined that (a) how the endotoxic stress affects peroxisomal function and autophagic degradation of peroxisomes-pexophagy, (b) how a superimposed dysfunction of lysosomes and pexophagy modifies responses to lipopolysaccharide (LPS), and (c) the mechanisms of peroxisomal contribution to renal injury. To accomplish this, we used lysosome-defective Lyst-mice in vivo and primary endothelial cells in vitro, and compared the responses with wild-type (WT) littermates.
LPS induced pexophagic degradation, followed by proliferation of peroxisomes in WT mice, which was abolished in Lyst-mice. Lyst-mice exhibited impaired activation of catalase, which together with preserved hydrogen peroxide-generating β-oxidation resulted in redox disequilibrium. LPS treatment induced a heightened inflammatory response, increased oxidative damage, and aggravated renal injury in Lyst-mice. Similarly, as in vivo, LPS-activated lysosomal (LYS) pexophagy and transiently repressed peroxisomes in vitro, supported by reduced peroxisomal density in the vicinity of lysosomes. Peroxisomal dynamics was also abolished in lysosome-defective cells, which accumulated peroxisomes with compromised functions and intraorganellar redox imbalance.
We demonstrated that pexophagy is a default response to endotoxic injury. However, when LYS dysfunction (a frequent companion of chronic diseases) is superimposed, recycling and functioning of peroxisomes are impaired, and an imbalance between hydrogen peroxide-generating β-oxidation and hydrogen peroxide-detoxifying catalase ensues, which ultimately results in peroxisomal burnout.
Our data strongly suggest that pexophagy, a cellular mechanism per se, is essential in functional maintenance of peroxisomes during LPS exposure. Inhibition of pexophagy results in accumulation of impaired peroxisomes, redox disequilibrium, and aggravated renal damage.
我们研究了(a)内毒素应激如何影响过氧化物酶体的功能和过氧化物酶体的自噬降解(pexophagy),(b)溶酶体和 pexophagy 叠加功能障碍如何改变对脂多糖(LPS)的反应,以及(c)过氧化物酶体对肾脏损伤的贡献机制。为此,我们在体内使用溶酶体缺陷型 Lyst-小鼠和体外原代内皮细胞,并将反应与野生型(WT)同窝仔鼠进行比较。
LPS 诱导 pexophagy 降解,随后 WT 小鼠的过氧化物酶体增殖,而 Lyst-小鼠则被消除。Lyst-小鼠表现出过氧化氢酶活性激活受损,这与保留的生成过氧化氢的β-氧化一起导致氧化还原失衡。LPS 处理诱导 Lyst-小鼠炎症反应增强、氧化损伤增加和肾脏损伤加重。同样,在体内,LPS 激活溶酶体(LYS)pexophagy,并在体外短暂抑制过氧化物酶体,这得到了靠近溶酶体的过氧化物酶体密度降低的支持。过氧化物酶体动力学也在溶酶体缺陷细胞中被消除,这些细胞积累了功能受损的过氧化物酶体和细胞器内氧化还原失衡。
我们证明了 pexophagy 是对内毒素损伤的默认反应。然而,当 LYS 功能障碍(慢性疾病的常见伴发症)叠加时,过氧化物酶体的回收和功能受损,过氧化氢生成的β-氧化和过氧化氢解毒的过氧化氢酶之间的平衡被打破,最终导致过氧化物酶体衰竭。
我们的数据强烈表明,pexophagy 作为一种细胞机制本身,在 LPS 暴露期间对过氧化物酶体的功能维持是必不可少的。pexophagy 的抑制导致受损过氧化物酶体的积累、氧化还原失衡和肾脏损伤加重。