Feher Kristen, Whelan James, Müller Samuel
University of Western Australia.
Stat Appl Genet Mol Biol. 2011 Sep 26;10(1):/j/sagmb.2011.10.issue-1/1544-6115.1667/1544-6115.1667.xml. doi: 10.2202/1544-6115.1667.
Random matrix theory (RMT) is well suited to describing the emergent properties of systems with complex interactions amongst their constituents through their eigenvalue spectrums. Some RMT results are applied to the problem of clustering high dimensional biological data with complex dependence structure amongst the variables. It will be shown that a gene relevance or correlation network can be constructed by choosing a correlation threshold in a principled way, such that it corresponds to a block diagonal structure in the correlation matrix, if such a structure exists. The structure is then found using community detection algorithms, but with parameter choice guided by RMT predictions. The resulting clustering is compared to a variety of hierarchical clustering outputs and is found to the most generalised result, in that it captures all the features found by the other considered methods.
随机矩阵理论(RMT)非常适合通过其特征值谱来描述其组成部分之间具有复杂相互作用的系统的涌现特性。一些RMT结果被应用于对具有复杂变量依赖结构的高维生物数据进行聚类的问题。结果表明,如果存在这样的结构,可以通过以一种有原则的方式选择相关阈值来构建基因相关性或关联网络,使得它对应于相关矩阵中的块对角结构。然后使用社区检测算法来找到该结构,但参数选择由RMT预测来指导。将得到的聚类结果与各种层次聚类输出进行比较,发现它是最广义的结果,因为它捕获了其他所考虑方法所发现的所有特征。