Suppr超能文献

用于单分子成像的紧凑型量子点

Compact quantum dots for single-molecule imaging.

作者信息

Smith Andrew M, Nie Shuming

机构信息

Department of Biomedical Engineering, Emory University.

出版信息

J Vis Exp. 2012 Oct 9(68):4236. doi: 10.3791/4236.

Abstract

Single-molecule imaging is an important tool for understanding the mechanisms of biomolecular function and for visualizing the spatial and temporal heterogeneity of molecular behaviors that underlie cellular biology (1-4). To image an individual molecule of interest, it is typically conjugated to a fluorescent tag (dye, protein, bead, or quantum dot) and observed with epifluorescence or total internal reflection fluorescence (TIRF) microscopy. While dyes and fluorescent proteins have been the mainstay of fluorescence imaging for decades, their fluorescence is unstable under high photon fluxes necessary to observe individual molecules, yielding only a few seconds of observation before complete loss of signal. Latex beads and dye-labeled beads provide improved signal stability but at the expense of drastically larger hydrodynamic size, which can deleteriously alter the diffusion and behavior of the molecule under study. Quantum dots (QDs) offer a balance between these two problematic regimes. These nanoparticles are composed of semiconductor materials and can be engineered with a hydrodynamically compact size with exceptional resistance to photodegradation (5). Thus in recent years QDs have been instrumental in enabling long-term observation of complex macromolecular behavior on the single molecule level. However these particles have still been found to exhibit impaired diffusion in crowded molecular environments such as the cellular cytoplasm and the neuronal synaptic cleft, where their sizes are still too large (4,6,7). Recently we have engineered the cores and surface coatings of QDs for minimized hydrodynamic size, while balancing offsets to colloidal stability, photostability, brightness, and nonspecific binding that have hindered the utility of compact QDs in the past (8,9). The goal of this article is to demonstrate the synthesis, modification, and characterization of these optimized nanocrystals, composed of an alloyed HgxCd1-xSe core coated with an insulating CdyZn1-yS shell, further coated with a multidentate polymer ligand modified with short polyethylene glycol (PEG) chains (Figure 1). Compared with conventional CdSe nanocrystals, HgxCd1-xSe alloys offer greater quantum yields of fluorescence, fluorescence at red and near-infrared wavelengths for enhanced signal-to-noise in cells, and excitation at non-cytotoxic visible wavelengths. Multidentate polymer coatings bind to the nanocrystal surface in a closed and flat conformation to minimize hydrodynamic size, and PEG neutralizes the surface charge to minimize nonspecific binding to cells and biomolecules. The end result is a brightly fluorescent nanocrystal with emission between 550-800 nm and a total hydrodynamic size near 12 nm. This is in the same size range as many soluble globular proteins in cells, and substantially smaller than conventional PEGylated QDs (25-35 nm).

摘要

单分子成像对于理解生物分子功能机制以及可视化构成细胞生物学基础的分子行为的时空异质性而言,是一项重要工具(1 - 4)。为了对单个目标分子进行成像,通常将其与荧光标签(染料、蛋白质、珠子或量子点)缀合,并使用落射荧光或全内反射荧光(TIRF)显微镜进行观察。尽管几十年来染料和荧光蛋白一直是荧光成像的主要手段,但在观察单个分子所需的高光子通量下,它们的荧光不稳定,在信号完全丧失之前只能观察短短几秒。乳胶珠和染料标记的珠子能提供更好的信号稳定性,但代价是流体动力学尺寸大幅增大,这可能会有害地改变所研究分子的扩散和行为。量子点(QDs)在这两种有问题的情况之间提供了一种平衡。这些纳米颗粒由半导体材料组成,可以设计成流体动力学尺寸紧凑且具有出色的抗光降解能力(5)。因此,近年来量子点有助于在单分子水平上对复杂大分子行为进行长期观察。然而,人们仍然发现这些颗粒在拥挤的分子环境(如细胞质和神经元突触间隙)中扩散受损,因为在这些环境中它们的尺寸仍然太大(4,6,7)。最近,我们对量子点的核心和表面涂层进行了设计,以使其流体动力学尺寸最小化,同时平衡对胶体稳定性、光稳定性、亮度和非特异性结合的影响,而这些因素过去一直阻碍着紧凑型量子点的应用(8,9)。本文的目的是展示这些优化纳米晶体的合成、修饰和表征,这些纳米晶体由涂覆有绝缘CdyZn1 - yS壳层且进一步涂覆有多齿聚合物配体(该配体用短聚乙二醇(PEG)链修饰)的合金化HgxCd1 - xSe核心组成(图1)。与传统的CdSe纳米晶体相比,HgxCd1 - xSe合金具有更高的荧光量子产率、在红色和近红外波长处的荧光,以增强细胞中的信噪比,以及在无细胞毒性的可见光波长处激发。多齿聚合物涂层以封闭且扁平的构象结合到纳米晶体表面,以最小化流体动力学尺寸,而PEG中和表面电荷,以最小化与细胞和生物分子的非特异性结合。最终结果是一种明亮的荧光纳米晶体,其发射波长在550 - 800 nm之间,总流体动力学尺寸接近12 nm。这与细胞中许多可溶性球状蛋白的尺寸范围相同,并且比传统的聚乙二醇化量子点(25 - 35 nm)小得多。

相似文献

1
Compact quantum dots for single-molecule imaging.
J Vis Exp. 2012 Oct 9(68):4236. doi: 10.3791/4236.
2
Compact and blinking-suppressed quantum dots for single-particle tracking in live cells.
J Phys Chem B. 2014 Dec 11;118(49):14140-7. doi: 10.1021/jp5064325. Epub 2014 Sep 8.
3
Multidentate Polymer Coatings for Compact and Homogeneous Quantum Dots with Efficient Bioconjugation.
J Am Chem Soc. 2016 Mar 16;138(10):3382-94. doi: 10.1021/jacs.5b12378. Epub 2016 Mar 8.
4
Minimizing nonspecific cellular binding of quantum dots with hydroxyl-derivatized surface coatings.
Anal Chem. 2008 Apr 15;80(8):3029-34. doi: 10.1021/ac800068q. Epub 2008 Mar 7.
6
Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores.
J Am Chem Soc. 2005 Mar 23;127(11):3870-8. doi: 10.1021/ja044031w.
7
Investigation of biocompatible and protein sensitive highly luminescent quantum dots/nanocrystals of CdSe, CdSe/ZnS and CdSe/CdS.
Spectrochim Acta A Mol Biomol Spectrosc. 2017 May 15;179:201-210. doi: 10.1016/j.saa.2017.02.028. Epub 2017 Feb 16.
9
Design of quantum dot-conjugated lipids for long-term, high-speed tracking experiments on cell surfaces.
J Am Chem Soc. 2008 Nov 12;130(45):15054-62. doi: 10.1021/ja803325b. Epub 2008 Oct 21.
10
Short-Wave Infrared Quantum Dots with Compact Sizes as Molecular Probes for Fluorescence Microscopy.
J Am Chem Soc. 2020 Feb 19;142(7):3449-3462. doi: 10.1021/jacs.9b11567. Epub 2020 Feb 4.

引用本文的文献

1
Quantum Dot Surface Engineering: Toward Inert Fluorophores with Compact Size and Bright, Stable Emission.
Coord Chem Rev. 2016 Aug 1;320-321:216-237. doi: 10.1016/j.ccr.2016.03.012. Epub 2016 Apr 19.
5
Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine.
Front Chem. 2014 Jul 15;2:48. doi: 10.3389/fchem.2014.00048. eCollection 2014.
6
The More Exotic Shapes of Semiconductor Nanocrystals: Emerging Applications in Bioimaging.
Curr Opin Chem Eng. 2014 May 1;4:137-143. doi: 10.1016/j.coche.2014.01.013.

本文引用的文献

1
Efficient functionalization of aqueous CdSe/ZnS nanocrystals using small-molecule chemical activators.
Chem Commun (Camb). 2011 Mar 28;47(12):3532-4. doi: 10.1039/c0cc04549g. Epub 2011 Feb 9.
4
Probing cellular events, one quantum dot at a time.
Nat Methods. 2010 Apr;7(4):275-85. doi: 10.1038/nmeth.1444. Epub 2010 Mar 30.
7
Next-generation quantum dots.
Nat Biotechnol. 2009 Aug;27(8):732-3. doi: 10.1038/nbt0809-732.
8
Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain.
Nat Nanotechnol. 2009 Jan;4(1):56-63. doi: 10.1038/nnano.2008.360. Epub 2008 Dec 7.
9
Minimizing the hydrodynamic size of quantum dots with multifunctional multidentate polymer ligands.
J Am Chem Soc. 2008 Aug 27;130(34):11278-9. doi: 10.1021/ja804306c. Epub 2008 Aug 5.
10
Bioconjugated quantum dots for in vivo molecular and cellular imaging.
Adv Drug Deliv Rev. 2008 Aug 17;60(11):1226-1240. doi: 10.1016/j.addr.2008.03.015. Epub 2008 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验