Suppr超能文献

家庭睡眠监测设备的最新进展。

Recent developments in home sleep-monitoring devices.

作者信息

Kelly Jessica M, Strecker Robert E, Bianchi Matt T

机构信息

Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Wang 720, Boston, MA 02114, USA.

出版信息

ISRN Neurol. 2012;2012:768794. doi: 10.5402/2012/768794. Epub 2012 Oct 14.

Abstract

Improving our understanding of sleep physiology and pathophysiology is an important goal for both medical and general wellness reasons. Although the gold standard for assessing sleep remains the laboratory polysomnogram, there is an increasing interest in portable monitoring devices that provide the opportunity for assessing sleep in real-world environments such as the home. Portable devices allow repeated measurements, evaluation of temporal patterns, and self-experimentation. We review recent developments in devices designed to monitor sleep-wake activity, as well as monitors designed for other purposes that could in principle be applied in the field of sleep (such as cardiac or respiratory sensing). As the body of supporting validation data grows, these devices hold promise for a variety of health and wellness goals. From a clinical and research standpoint, the capacity to obtain longitudinal sleep-wake data may improve disease phenotyping, individualized treatment decisions, and individualized health optimization. From a wellness standpoint, commercially available devices may allow individuals to track their own sleep with the goal of finding patterns and correlations with modifiable behaviors such as exercise, diet, and sleep aids.

摘要

出于医学和整体健康的原因,增进我们对睡眠生理和病理生理的理解是一个重要目标。尽管评估睡眠的金标准仍然是实验室多导睡眠图,但人们对便携式监测设备的兴趣与日俱增,这些设备为在家庭等现实环境中评估睡眠提供了机会。便携式设备允许进行重复测量、评估时间模式以及自我实验。我们回顾了旨在监测睡眠-觉醒活动的设备以及设计用于其他目的但原则上可应用于睡眠领域(如心脏或呼吸传感)的监测器的最新进展。随着支持验证数据的不断增加,这些设备有望实现各种健康和保健目标。从临床和研究的角度来看,获取纵向睡眠-觉醒数据的能力可能会改善疾病表型分析、个性化治疗决策以及个性化健康优化。从健康的角度来看,市面上的设备可能会让个人追踪自己的睡眠,目的是找到与运动、饮食和助眠药物等可改变行为的模式和相关性。

相似文献

1
Recent developments in home sleep-monitoring devices.
ISRN Neurol. 2012;2012:768794. doi: 10.5402/2012/768794. Epub 2012 Oct 14.
2
ECG patch monitors for assessment of cardiac rhythm abnormalities.
Prog Cardiovasc Dis. 2013 Sep-Oct;56(2):224-9. doi: 10.1016/j.pcad.2013.08.006.
3
4
Consumer sleep monitors: is there a baby in the bathwater?
Nat Sci Sleep. 2015 Nov 5;7:147-57. doi: 10.2147/NSS.S94182. eCollection 2015.
5
Sleep devices: wearables and nearables, informational and interventional, consumer and clinical.
Metabolism. 2018 Jul;84:99-108. doi: 10.1016/j.metabol.2017.10.008. Epub 2017 Dec 8.
8
Past, Present, and Future of Multisensory Wearable Technology to Monitor Sleep and Circadian Rhythms.
Front Digit Health. 2021 Aug 16;3:721919. doi: 10.3389/fdgth.2021.721919. eCollection 2021.
9
The validity of activity monitors for measuring sleep in elite athletes.
J Sci Med Sport. 2016 Oct;19(10):848-53. doi: 10.1016/j.jsams.2015.12.007. Epub 2015 Dec 12.
10
State of home sleep studies.
Clin Chest Med. 2003 Jun;24(2):283-95. doi: 10.1016/s0272-5231(03)00018-2.

引用本文的文献

2
Functional characteristics of sleep monitoring devices in China: A real-world cross-sectional study.
Digit Health. 2025 Feb 18;11:20552076251320752. doi: 10.1177/20552076251320752. eCollection 2025 Jan-Dec.
3
Association of edentulism and obstructive sleep apnea: A systematic review.
J Prosthodont. 2025 Apr;34(S1):90-99. doi: 10.1111/jopr.13981. Epub 2024 Nov 13.
4
Deep Attention Networks With Multi-Temporal Information Fusion for Sleep Apnea Detection.
IEEE Open J Eng Med Biol. 2024 May 27;5:792-802. doi: 10.1109/OJEMB.2024.3405666. eCollection 2024.
6
Digital biomarkers for precision diagnosis and monitoring in Parkinson's disease.
NPJ Digit Med. 2024 Aug 21;7(1):218. doi: 10.1038/s41746-024-01217-2.
8
The Two Fundamental Shapes of Sleep Heart Rate Dynamics and Their Connection to Mental Health in College Students.
Digit Biomark. 2024 Jul 1;8(1):120-131. doi: 10.1159/000539487. eCollection 2024 Jan-Dec.
9
Introducing a Remote Patient Monitoring Usability Impact Model to Overcome Challenges.
Sensors (Basel). 2024 Jun 19;24(12):3977. doi: 10.3390/s24123977.

本文引用的文献

1
Sleep and Wake Classification With ECG and Respiratory Effort Signals.
IEEE Trans Biomed Circuits Syst. 2009 Apr;3(2):71-8. doi: 10.1109/TBCAS.2008.2008817.
2
Obstructive sleep apnea devices for out-of-center (OOC) testing: technology evaluation.
J Clin Sleep Med. 2011 Oct 15;7(5):531-48. doi: 10.5664/JCSM.1328.
3
Validation of an automated wireless system to monitor sleep in healthy adults.
J Sleep Res. 2012 Apr;21(2):221-30. doi: 10.1111/j.1365-2869.2011.00944.x. Epub 2011 Aug 22.
4
The role and validity of actigraphy in sleep medicine: an update.
Sleep Med Rev. 2011 Aug;15(4):259-67. doi: 10.1016/j.smrv.2010.10.001. Epub 2011 Jan 14.
5
Evaluation of the sleep quality based on bed sensor signals: Time-variant analysis.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3994-7. doi: 10.1109/IEMBS.2010.5628005.
6
Automatic sleep staging based on ballistocardiographic signals recorded through bed sensors.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3273-6. doi: 10.1109/IEMBS.2010.5627217.
7
Sleep/wake measurement using a non-contact biomotion sensor.
J Sleep Res. 2011 Jun;20(2):356-66. doi: 10.1111/j.1365-2869.2010.00876.x. Epub 2010 Aug 12.
9
Obstructive sleep apnea alters sleep stage transition dynamics.
PLoS One. 2010 Jun 28;5(6):e11356. doi: 10.1371/journal.pone.0011356.
10
Sleep staging based on signals acquired through bed sensor.
IEEE Trans Inf Technol Biomed. 2010 May;14(3):776-85. doi: 10.1109/TITB.2010.2044797. Epub 2010 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验