Suppr超能文献

基于通过床传感器记录的心冲击图信号的自动睡眠分期。

Automatic sleep staging based on ballistocardiographic signals recorded through bed sensors.

作者信息

Migliorini Matteo, Bianchi Anna M, Nisticò Domenico, Kortelainen Juha, Arce-Santana Edgar, Cerutti Sergio, Mendez Martin O

机构信息

Dept. of Biomedical Engineering, Politecnico di Milano, Piazza. Leonardo da Vinci 32, Italy.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3273-6. doi: 10.1109/IEMBS.2010.5627217.

Abstract

This study presents different methods for automatic sleep classification based on heart rate variability (HRV), respiration and movement signals recorded through bed sensors. Two methods for feature extraction have been implemented: time variant-autoregressive model (TVAM) and wavelet discrete transform (WDT); the obtained features are fed into two classifiers: Quadratic (QD) and Linear (LD) discriminant for staging sleep in REM, nonREM and WAKE periods. The performances of all the possible combinations of feature extractors and classifiers are compared in terms of accuracy and kappa index, using clinical polysomographyc evaluation as golden standard. 17 recordings from healthy subjects, including also polisomnography, were used to train and test the algorithms. When automatic classification is compared. QD-TVAM algorithm achieved a total accuracy of 76.81 ± 7.51 % and kappa index of 0.55 ± 0.10, while LD-WDT achieved a total accuracy of 79 ± 10% and kappa index of 0.51 ± 0.17. The results suggest that a good sleep evaluation can be achieved through non-conventional recording systems that could be used outside sleep centers.

摘要

本研究提出了基于通过床传感器记录的心率变异性(HRV)、呼吸和运动信号进行自动睡眠分类的不同方法。已实现了两种特征提取方法:时变自回归模型(TVAM)和小波离散变换(WDT);将获得的特征输入到两个分类器中:二次(QD)和线性(LD)判别器,用于在快速眼动(REM)、非快速眼动(nonREM)和清醒期对睡眠进行分期。以临床多导睡眠图评估作为金标准,从准确性和kappa指数方面比较了特征提取器和分类器所有可能组合的性能。使用包括多导睡眠图在内的17名健康受试者的记录来训练和测试算法。当比较自动分类时,QD-TVAM算法的总准确率为76.81±7.51%,kappa指数为0.55±0.10,而LD-WDT算法的总准确率为79±10%,kappa指数为0.51±0.17。结果表明,通过可在睡眠中心以外使用的非常规记录系统可以实现良好的睡眠评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验