Suppr超能文献

芯壳硅纳米线亚带隙光探测的偏置依赖性。

Bias dependence of sub-bandgap light detection for core-shell silicon nanowires.

机构信息

Department of Electrical and Computer Engineering, Jacobs School of Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0409, USA.

出版信息

Nano Lett. 2012 Nov 14;12(11):5929-35. doi: 10.1021/nl3033558. Epub 2012 Oct 29.

Abstract

We experimentally demonstrate a vertically arrayed silicon nanowire-based device that exhibits voltage dependence of photoresponse to infrared sub-bandgap optical radiation. The device is fabricated using a proximity solid-state phosphorus diffusion method to convert the surface areas of highly boron-doped silicon nanowires into n-type, thus forming a radial core-shell p-n junction structure. Prominent photoresponse from such core-shell Si nanowires is observed under sub-bandgap illumination at 1310 nm. The strong bias dependence of the photoresponse and other device characteristics indicates that the sub-bandgap absorption is attributed to the intrinsic properties of core-shell Si nanowires rather than the surface states. The attractive characteristics are based on three physical mechanisms: the Franz-Keldysh effect, quasi-quantum confinement effect, and the impurity-state assisted photon absorption. The first two effects enhance carrier tunneling probability, rendering a stronger wave function overlap to facilitate sub-bandgap absorption. The last effect relaxes the k-selection rule by involving the localized impurity states, thus removing the limit imposed by the indirect bandgap nature of Si. The presented device uses single-crystal silicon and holds promise of fabricating nanophotonic systems in a fully complementary metal-oxide-semiconductor (CMOS) compatible process. The concept and approach can be applied to silicon and other materials to significantly extend the operable wavelength regime beyond the constraint of energy bandgap.

摘要

我们实验演示了一种基于垂直排列硅纳米线的器件,该器件表现出对红外亚带隙光辐射的光响应随电压变化的特性。该器件采用近邻固态磷扩散方法制造,将高度掺硼硅纳米线的表面积转化为 n 型,从而形成径向核壳 p-n 结结构。在 1310nm 的亚带隙照明下,观察到这种核壳 Si 纳米线具有显著的光响应。光响应和其他器件特性的强烈偏置依赖性表明,亚带隙吸收归因于核壳 Si 纳米线的固有性质,而不是表面态。这种吸引人的特性基于三个物理机制:Franz-Keldysh 效应、准量子限制效应和杂质态辅助光子吸收。前两个效应增强了载流子隧穿概率,使波函数重叠更强,从而促进了亚带隙吸收。最后一个效应通过涉及局域杂质态放宽了 k 选择规则,从而消除了 Si 间接带隙性质的限制。所提出的器件使用单晶硅,并有望在完全兼容互补金属氧化物半导体 (CMOS) 的工艺中制造纳米光子系统。该概念和方法可应用于硅和其他材料,显著扩展可操作波长范围,超越能带隙的限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验