Center for Computational Neuroscience and Neural Technology-CompNet, Boston University, Boston, MA 02215, USA.
Neural Netw. 2013 Jan;37:141-64. doi: 10.1016/j.neunet.2012.09.011. Epub 2012 Oct 6.
Freezing is an effective defense strategy for some prey, because their predators rely on visual motion to distinguish objects from their surroundings. An object moving over a background progressively covers (deletes) and uncovers (accretes) background texture while simultaneously producing discontinuities in the optic flow field. These events unambiguously specify kinetic occlusion and can produce a crisp edge, depth perception, and figure-ground segmentation between identically textured surfaces--percepts which all disappear without motion. Given two abutting regions of uniform random texture with different motion velocities, one region appears to be situated farther away and behind the other (i.e., the ground) if its texture is accreted or deleted at the boundary between the regions, irrespective of region and boundary velocities. Consequently, a region with moving texture appears farther away than a stationary region if the boundary is stationary, but it appears closer (i.e., the figure) if the boundary is moving coherently with the moving texture. A computational model of visual areas V1 and V2 shows how interactions between orientation- and direction-selective cells first create a motion-defined boundary and then signal kinetic occlusion at that boundary. Activation of model occlusion detectors tuned to a particular velocity results in the model assigning the adjacent surface with a matching velocity to the far depth. A weak speed-depth bias brings faster-moving texture regions forward in depth in the absence of occlusion (shearing motion). These processes together reproduce human psychophysical reports of depth ordering for key cases of kinetic occlusion displays.
冻结是一些猎物的有效防御策略,因为它们的捕食者依赖视觉运动来区分物体与其周围环境。当一个物体在背景上移动时,它会逐渐覆盖(删除)和揭示(积累)背景纹理,同时在光流场中产生不连续性。这些事件明确指定了运动闭塞,可以产生清晰的边缘、深度感知和相同纹理表面之间的图形-背景分割——如果没有运动,这些感知都会消失。给定两个具有不同运动速度的均匀随机纹理相邻区域,如果一个区域的纹理在区域之间的边界处积累或删除,则该区域看起来位于另一个区域(即地面)更远和后面(即地面)。因此,如果边界静止,那么具有运动纹理的区域看起来比静止区域更远,但如果边界与运动纹理一致地移动,则它看起来更近(即图形)。V1 和 V2 视觉区域的计算模型展示了方向和方向选择性细胞之间的相互作用如何首先创建一个运动定义的边界,然后在该边界处发出运动闭塞信号。对特定速度进行调谐的模型闭塞探测器的激活会导致模型将具有匹配速度的相邻表面分配到更远的深度。在不存在闭塞(剪切运动)的情况下,较弱的速度-深度偏差会使运动更快的纹理区域在深度上向前移动。这些过程共同再现了人类心理物理学报告的关键运动闭塞显示的深度排序。