Suppr超能文献

流行病学研究中 M 偏倚的意义:一项模拟研究。

Implications of M bias in epidemiologic studies: a simulation study.

机构信息

Duke Clinical Research Institute, P.O. Box 17969, Durham, NC 27715, USA.

出版信息

Am J Epidemiol. 2012 Nov 15;176(10):938-48. doi: 10.1093/aje/kws165. Epub 2012 Oct 25.

Abstract

Collider-stratification bias arises from conditioning on a variable (collider) which opens a path from exposure to outcome. M bias occurs when the collider-stratification bias is transmitted through ancestors of exposure and outcome. Previous theoretical work, but not empirical data, has demonstrated that M bias is smaller than confounding bias. The authors simulated data for large cohort studies with binary exposure, an outcome, a collider, and 2 predictors of the collider. They created 178 scenarios by changing the frequencies of variables and/or the magnitudes of associations among the variables. They calculated the effect estimate, percentage bias, and mean squared error. M bias in these realistic scenarios ranged from -2% to -5%. When the authors increased one or both relative risks for the relation between the collider and unmeasured factors to ≥8, the negative bias was more substantial (>15%). The result was substantially biased (e.g., >20%) if an unmeasured confounder that was also a collider was not adjusted to avoid M bias. In scenarios resembling those the authors examined, M bias had a small impact unless associations between the collider and unmeasured confounders were very large (relative risk > 8). When a collider is itself an important confounder, controlling for confounding would take precedence over avoiding M bias.

摘要

混杂-分层偏倚源于对一个变量(混杂因素)的条件作用,该变量打开了从暴露到结局的途径。当混杂因素分层偏倚通过暴露和结局的祖先传递时,就会发生 M 偏倚。之前的理论工作,但不是经验数据,已经证明 M 偏倚小于混杂偏倚。作者模拟了具有二分类暴露、结局、混杂因素和混杂因素 2 个预测因素的大型队列研究的数据。他们通过改变变量的频率和/或变量之间关联的幅度,创建了 178 种情况。他们计算了效应估计值、百分比偏差和均方误差。在这些现实情况下,M 偏倚的范围为-2%至-5%。当作者增加混杂因素与未测量因素之间关系的一个或两个相对风险≥8 时,负偏倚更大(>15%)。如果未测量的混杂因素也是混杂因素,则不调整以避免 M 偏倚,结果会出现很大的偏差(例如>20%)。在作者检查的类似情况下,除非混杂因素与未测量混杂因素之间的关联非常大(相对风险>8),否则 M 偏倚的影响很小。当混杂因素本身就是一个重要的混杂因素时,控制混杂因素将优先于避免 M 偏倚。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验