Suppr超能文献

微生物胞外聚合物:重金属生物修复的核心要素。

Microbial extracellular polymeric substances: central elements in heavy metal bioremediation.

机构信息

Microbiology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019 India.

出版信息

Indian J Microbiol. 2008 Mar;48(1):49-64. doi: 10.1007/s12088-008-0006-5. Epub 2008 May 1.

Abstract

Extracellular polymeric substances (EPS) of microbial origin are a complex mixture of biopolymers comprising polysaccharides, proteins, nucleic acids, uronic acids, humic substances, lipids, etc. Bacterial secretions, shedding of cell surface materials, cell lysates and adsorption of organic constituents from the environment result in EPS formation in a wide variety of free-living bacteria as well as microbial aggregates like biofilms, bioflocs and biogranules. Irrespective of origin, EPS may be loosely attached to the cell surface or bacteria may be embedded in EPS. Compositional variation exists amongst EPS extracted from pure bacterial cultures and heterogeneous microbial communities which are regulated by the organic and inorganic constituents of the microenvironment. Functionally, EPS aid in cell-to-cell aggregation, adhesion to substratum, formation of flocs, protection from dessication and resistance to harmful exogenous materials. In addition, exopolymers serve as biosorbing agents by accumulating nutrients from the surrounding environment and also play a crucial role in biosorption of heavy metals. Being polyanionic in nature, EPS forms complexes with metal cations resulting in metal immobilization within the exopolymeric matrix. These complexes generally result from electrostatic interactions between the metal ligands and negatively charged components of biopolymers. Moreover, enzymatic activities in EPS also assist detoxification of heavy metals by transformation and subsequent precipitation in the polymeric mass. Although the core mechanism for metal binding and / or transformation using microbial exopolymer remains identical, the existence and complexity of EPS from pure bacterial cultures, biofilms, biogranules and activated sludge systems differ significantly, which in turn affects the EPS-metal interactions. This paper presents the features of EPS from various sources with a view to establish their role as central elements in bioremediation of heavy metals.

摘要

微生物来源的胞外聚合物(EPS)是一种由生物聚合物组成的复杂混合物,包括多糖、蛋白质、核酸、糖醛酸、腐殖质、脂质等。细菌的分泌、细胞表面物质的脱落、细胞裂解物以及环境中有机成分的吸附都会导致各种自由生活细菌以及微生物聚集体(如生物膜、生物絮体和生物颗粒)中 EPS 的形成。无论来源如何,EPS 可能松散地附着在细胞表面,或者细菌可能嵌入 EPS 中。从纯细菌培养物和异质微生物群落中提取的 EPS 在组成上存在差异,这些差异受微环境中有机和无机成分的调节。从功能上讲,EPS 有助于细胞间聚集、附着在基质上、形成絮体、防止干燥和抵抗有害外源物质。此外,外聚物作为生物吸附剂,通过从周围环境中积累营养物质,同时在重金属的生物吸附中也起着至关重要的作用。由于 EPS 具有聚阴离子的性质,它与金属阳离子形成复合物,导致金属在聚合物基质内被固定。这些复合物通常是金属配体与生物聚合物中带负电荷的成分之间的静电相互作用的结果。此外,EPS 中的酶活性也通过在聚合物质量中的转化和随后沉淀来协助重金属的解毒。尽管使用微生物外聚物结合和/或转化金属的核心机制保持不变,但来自纯细菌培养物、生物膜、生物颗粒和活性污泥系统的 EPS 的存在和复杂性有很大的不同,这反过来又影响了 EPS-金属相互作用。本文介绍了各种来源的 EPS 的特征,以期确定其作为生物修复重金属的核心要素的作用。

相似文献

1
Microbial extracellular polymeric substances: central elements in heavy metal bioremediation.
Indian J Microbiol. 2008 Mar;48(1):49-64. doi: 10.1007/s12088-008-0006-5. Epub 2008 May 1.
2
Extracellular polymeric substances of bacteria and their potential environmental applications.
J Environ Manage. 2014 Nov 1;144:1-25. doi: 10.1016/j.jenvman.2014.05.010. Epub 2014 Jun 6.
3
Thermodynamics of binding interactions between extracellular polymeric substances and heavy metals by isothermal titration microcalorimetry.
Bioresour Technol. 2017 May;232:354-363. doi: 10.1016/j.biortech.2017.02.067. Epub 2017 Feb 20.
5
The effects of extracellular polymeric substances on the formation and stability of biogranules.
Appl Microbiol Biotechnol. 2004 Aug;65(2):143-8. doi: 10.1007/s00253-004-1657-8. Epub 2004 Jun 9.
8
Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies.
Biotechnol Rep (Amst). 2016 Dec 23;13:58-71. doi: 10.1016/j.btre.2016.12.006. eCollection 2017 Mar.
9
Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals.
Bioprocess Biosyst Eng. 2020 Jan;43(1):153-167. doi: 10.1007/s00449-019-02213-7. Epub 2019 Sep 23.
10
Insight into the roles of microbial extracellular polymer substances in metal biosorption.
Bioresour Technol. 2014 May;160:15-23. doi: 10.1016/j.biortech.2013.11.074. Epub 2013 Dec 1.

引用本文的文献

1
Quorum sensing in biofilm-mediated heavy metal resistance and transformation: environmental perspectives and bioremediation.
Front Microbiol. 2025 Jul 3;16:1607370. doi: 10.3389/fmicb.2025.1607370. eCollection 2025.
2
Characterization of the metabolism of the yeast growing as a biofilm.
FEMS Microbes. 2024 Aug 24;5:xtae026. doi: 10.1093/femsmc/xtae026. eCollection 2024.
5
Comparative genomics of seven genomes of genus reveals important halo adaptations and genes for stress response.
3 Biotech. 2024 Feb;14(2):40. doi: 10.1007/s13205-023-03887-3. Epub 2024 Jan 17.
6
Metal sequestration by Microcystis extracellular polymers: a promising path to greener water treatment.
Environ Sci Pollut Res Int. 2024 Feb;31(7):11192-11213. doi: 10.1007/s11356-023-31755-3. Epub 2024 Jan 13.
7
Heavy Metal Tolerance of Microorganisms Isolated from Coastal Marine Sediments and Their Lead Removal Potential.
Microorganisms. 2023 Nov 4;11(11):2708. doi: 10.3390/microorganisms11112708.
8
Metal tolerance and biosorption capacities of bacterial strains isolated from an urban watershed.
Front Microbiol. 2023 Oct 23;14:1278886. doi: 10.3389/fmicb.2023.1278886. eCollection 2023.
9
Bioremediation of Heavy Metals by the Genus Bacillus.
Int J Environ Res Public Health. 2023 Mar 11;20(6):4964. doi: 10.3390/ijerph20064964.
10
Potential functions and applications of diverse microbial exopolysaccharides in marine environments.
J Genet Eng Biotechnol. 2022 Nov 1;20(1):151. doi: 10.1186/s43141-022-00432-2.

本文引用的文献

1
Microscale structure and function of anaerobic-aerobic granules containing glycogen accumulating organisms.
FEMS Microbiol Ecol. 2003 Aug 1;45(3):253-61. doi: 10.1016/S0168-6496(03)00159-4.
2
Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values.
J Hazard Mater. 2008 Feb 28;151(1):185-93. doi: 10.1016/j.jhazmat.2007.05.070. Epub 2007 May 31.
3
Equilibrium and kinetics of metal biosorption by sludge from a biological nutrient removal system.
Environ Technol. 2007 Apr;28(4):453-62. doi: 10.1080/09593332808618806.
4
Biosorption of Cr (VI) using a bacterial biofilm supported on granular activated carbon and on zeolite.
Bioresour Technol. 2008 Mar;99(4):801-6. doi: 10.1016/j.biortech.2007.01.040. Epub 2007 Mar 26.
5
Spatial distributions of copper in microbial biofilms by scanning electrochemical microscopy.
Environ Sci Technol. 2007 Feb 1;41(3):936-41. doi: 10.1021/es061293k.
6
Biosorption of cadmium(II) and lead(II) ions from aqueous solutions onto dried activated sludge.
J Environ Sci (China). 2006;18(5):840-4. doi: 10.1016/s1001-0742(06)60002-8.
8
Chemical stress induced by copper: examination of a biofilm system.
Water Sci Technol. 2006;54(9):191-9. doi: 10.2166/wst.2006.865.
9
Distribution of extracellular polymeric substances in aerobic granules.
Appl Microbiol Biotechnol. 2007 Jan;73(6):1463-9. doi: 10.1007/s00253-006-0617-x. Epub 2006 Oct 7.
10
Biosorption of cadmium by various types of dried sludge: an equilibrium study and investigation of mechanisms.
J Hazard Mater. 2006 Nov 16;138(2):378-83. doi: 10.1016/j.jhazmat.2006.05.059. Epub 2006 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验