Suppr超能文献

蓝藻作为环境可持续性的潜在选择——前景与挑战。

Cyanobacteria as potential options for environmental sustainability - promises and challenges.

机构信息

Division of Microbiology, Indian Agricultural Research Institute, New Delhi, 110 012 India.

出版信息

Indian J Microbiol. 2008 Mar;48(1):89-94. doi: 10.1007/s12088-008-0009-2. Epub 2008 May 1.

Abstract

Cyanobacteria represent an ancient group of photosynthetic prokaryotes, whose ubiquity, metabolic flexibility and adaptive abilities have made them a subject of research worldwide. These structurally simple organisms combine in themselves interesting facets of plant and bacterial metabolism, which is amenable to genetic exploitation. Despite their globally recognized significance in the sustenance of fertility in rice based cropping systems, they have not been tapped for their extraordinary repertoire of activities, especially their beneficial role as biological agents in remediation and amelioration of soil and water environment and as sinks for greenhouse gases. The information available on these aspects and future lines of research for more efficient utilization of these microorganisms is presented.

摘要

蓝藻是一种古老的光合原核生物,它们分布广泛、代谢灵活、适应能力强,这使得它们成为了全世界研究的对象。这些结构简单的生物体将植物和细菌代谢的有趣方面结合在一起,这使得它们能够进行遗传利用。尽管它们在维持水稻种植系统的肥力方面具有全球公认的重要意义,但它们尚未被挖掘出其非凡的活动能力,特别是它们作为生物制剂在土壤和水环境保护以及温室气体汇方面的有益作用。本文介绍了有关这些方面的信息和未来的研究方向,以期更有效地利用这些微生物。

相似文献

1
Cyanobacteria as potential options for environmental sustainability - promises and challenges.
Indian J Microbiol. 2008 Mar;48(1):89-94. doi: 10.1007/s12088-008-0009-2. Epub 2008 May 1.
2
Deciphering and engineering photosynthetic cyanobacteria for heavy metal bioremediation.
Sci Total Environ. 2021 Mar 20;761:144111. doi: 10.1016/j.scitotenv.2020.144111. Epub 2020 Dec 16.
3
Effects of water deficit stress on agronomic and physiological responses of rice and greenhouse gas emission from rice soil under elevated atmospheric CO.
Sci Total Environ. 2019 Feb 10;650(Pt 2):2032-2050. doi: 10.1016/j.scitotenv.2018.09.332. Epub 2018 Sep 29.
4
Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health.
Crit Rev Biotechnol. 2019 Dec;39(8):981-998. doi: 10.1080/07388551.2019.1654972. Epub 2019 Aug 27.
5
Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation.
Environ Int. 2013 Jan;51:59-72. doi: 10.1016/j.envint.2012.10.007. Epub 2012 Nov 28.
6
Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges.
Biotechnol Adv. 2018 Jul-Aug;36(4):1255-1273. doi: 10.1016/j.biotechadv.2018.04.004. Epub 2018 Apr 17.
7
Current states and challenges of salt-affected soil remediation by cyanobacteria.
Sci Total Environ. 2019 Jun 15;669:258-272. doi: 10.1016/j.scitotenv.2019.03.104. Epub 2019 Mar 8.
8
[Effects of the Crop Rotation on Greenhouse Gases from Flooded Paddy Fields].
Huan Jing Ke Xue. 2019 Jan 8;40(1):392-400. doi: 10.13227/j.hjkx.201805143.

引用本文的文献

3
Synergistic effects of salt and ultraviolet radiation on the rice-field cyanobacterium Nostochopsis lobatus HKAR-21.
Photochem Photobiol Sci. 2024 Feb;23(2):285-302. doi: 10.1007/s43630-023-00517-y. Epub 2023 Dec 24.
5
Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat.
Environ Sci Pollut Res Int. 2016 Apr;23(7):6608-20. doi: 10.1007/s11356-015-5884-6. Epub 2015 Dec 7.
6
Distinct salt-dependent effects impair Fremyella diplosiphon pigmentation and cellular shape.
Plant Signal Behav. 2013 Jul;8(7):e24713. doi: 10.4161/psb.24713. Epub 2013 May 6.
7
Developing biochemical and molecular markers for cyanobacterial inoculants.
Folia Microbiol (Praha). 2010 Sep;55(5):474-80. doi: 10.1007/s12223-010-0079-5. Epub 2010 Oct 13.

本文引用的文献

2
Methane oxidation in an intensively cropped tropical rice field soil under long-term application of organic and mineral fertilizers.
J Environ Qual. 2007 Oct 16;36(6):1577-84. doi: 10.2134/jeq2006.0501. Print 2007 Nov-Dec.
3
Evidence for HCO(3) Transport by the Blue-Green Alga (Cyanobacterium) Coccochloris peniocystis.
Plant Physiol. 1980 Feb;65(2):397-402. doi: 10.1104/pp.65.2.397.
4
Relationship between Sodium Influx and Salt Tolerance of Nitrogen-Fixing Cyanobacteria.
Appl Environ Microbiol. 1987 Aug;53(8):1934-9. doi: 10.1128/aem.53.8.1934-1939.1987.
5
The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism.
J Exp Bot. 2006;57(2):249-65. doi: 10.1093/jxb/eri286. Epub 2005 Oct 10.
6
Degradation of azo dyes by algae.
Environ Pollut. 1992;75(3):273-8. doi: 10.1016/0269-7491(92)90127-v.
8
Microbial biosorption of metals: potential in the treatment of metal pollution.
Biotechnol Adv. 1994;12(4):647-52. doi: 10.1016/0734-9750(94)90005-1.
10
Combined effect of mercuric chloride and selenium dioxide on the growth of the cyanobacteria, Anacystis nidulans.
Bull Environ Contam Toxicol. 2002 Dec;69(6):900-7. doi: 10.1007/s00128-002-0144-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验