Suppr超能文献

消融多波折返:一般原则和计算机模拟分析。

Ablation of multi-wavelet re-entry: general principles and in silico analyses.

机构信息

Department of Medicine, University of Vermont College of Burlington, VT 05401, USA.

出版信息

Europace. 2012 Nov;14 Suppl 5:v106-v111. doi: 10.1093/europace/eus278.

Abstract

AIMS

Catheter ablation strategies for treatment of cardiac arrhythmias are quite successful when targeting spatially constrained substrates. Complex, dynamic, and spatially varying substrates, however, pose a significant challenge for ablation, which delivers spatially fixed lesions. We describe tissue excitation using concepts of surface topology which provides a framework for addressing this challenge. The aim of this study was to test the efficacy of mechanism-based ablation strategies in the setting of complex dynamic substrates.

METHODS AND RESULTS

We used a computational model of propagation through electrically excitable tissue to test the effects of ablation on excitation patterns of progressively greater complexity, from fixed rotors to multi-wavelet re-entry. Our results indicate that (i) focal ablation at a spiral-wave core does not result in termination; (ii) termination requires linear lesions from the tissue edge to the spiral-wave core; (iii) meandering spiral-waves terminate upon collision with a boundary (linear lesion or tissue edge); (iv) the probability of terminating multi-wavelet re-entry is proportional to the ratio of total boundary length to tissue area; (v) the efficacy of linear lesions varies directly with the regional density of spiral-waves.

CONCLUSION

We establish a theoretical framework for re-entrant arrhythmias that explains the requirements for their successful treatment. We demonstrate the inadequacy of focal ablation for spatially fixed spiral-waves. Mechanistically guided principles for ablating multi-wavelet re-entry are provided. The potential to capitalize upon regional heterogeneity of spiral-wave density for improved ablation efficacy is described.

摘要

目的

当针对空间受限的底物时,导管消融策略在治疗心律失常方面非常成功。然而,复杂、动态和空间变化的底物对消融提出了重大挑战,因为消融会产生空间固定的病变。我们使用表面拓扑学的概念来描述组织兴奋,这为解决这一挑战提供了一个框架。本研究的目的是在复杂动态底物的背景下测试基于机制的消融策略的疗效。

方法和结果

我们使用传播通过可兴奋组织的计算模型来测试消融对从固定转子到多波前折返的递增复杂性的兴奋模式的影响。我们的结果表明:(i) 在螺旋波核心处进行局灶性消融不会导致终止;(ii) 终止需要从组织边缘到螺旋波核心的线性病变;(iii) 蜿蜒的螺旋波在与边界(线性病变或组织边缘)碰撞时会终止;(iv) 终止多波前折返的概率与总边界长度与组织面积的比值成正比;(v) 线性病变的疗效与螺旋波的局部密度直接相关。

结论

我们建立了一个折返性心律失常的理论框架,解释了成功治疗它们的要求。我们证明了局灶性消融对于空间固定的螺旋波是不充分的。为消融多波前折返提供了基于机制的指导原则。描述了利用螺旋波密度的区域异质性来提高消融疗效的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验