Nash Martyn P, Panfilov Alexander V
Bioengineering Institute and Department of Engineering Science, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
Prog Biophys Mol Biol. 2004 Jun-Jul;85(2-3):501-22. doi: 10.1016/j.pbiomolbio.2004.01.016.
We introduce the concept of a contracting excitable medium that is capable of conducting non-linear waves of excitation that in turn initiate contraction. Furthermore, these kinematic deformations have a feedback effect on the excitation properties of the medium. Electrical characteristics resemble basic models of cardiac excitation that have been used to successfully study mechanisms of reentrant cardiac arrhythmias in electrophysiology. We present a computational framework that employs electromechanical and mechanoelectric feedback to couple a three-variable FitzHugh-Nagumo-type excitation-tension model to the non-linear stress equilibrium equations, which govern large deformation hyperelasticity. Numerically, the coupled electromechanical model combines a finite difference method approach to integrate the excitation equations, with a Galerkin finite element method to solve the equations governing tissue mechanics. We present example computations demonstrating various effects of contraction on stationary rotating spiral waves and spiral wave break. We show that tissue mechanics significantly contributes to the dynamics of electrical propagation, and that a coupled electromechanical approach should be pursued in future electrophysiological modelling studies.
我们引入了一种收缩性可兴奋介质的概念,这种介质能够传导非线性兴奋波,进而引发收缩。此外,这些运动学变形对介质的兴奋特性具有反馈作用。其电学特性类似于心脏兴奋的基本模型,这些模型已被成功用于研究电生理学中折返性心律失常的机制。我们提出了一个计算框架,该框架采用机电和机械电反馈,将一个三变量的菲茨休 - 纳古莫型兴奋 - 张力模型与控制大变形超弹性的非线性应力平衡方程相耦合。在数值计算方面,耦合的机电模型结合了有限差分法来积分兴奋方程,以及伽辽金有限元法来求解控制组织力学的方程。我们给出了示例计算,展示了收缩对静止旋转螺旋波和螺旋波破裂的各种影响。我们表明,组织力学对电传播动力学有显著贡献,并且在未来的电生理建模研究中应采用耦合机电方法。