Hermans Erno J, Henckens Marloes J A G, Roelofs Karin, Fernández Guillén
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, 6525 EN, The Netherlands; Department for Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, 6525 EN, The Netherlands; Department of Psychology, New York University, New York, NY 10003, USA.
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, 6525 EN, The Netherlands; Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands.
Neuroimage. 2013 Feb 1;66:278-87. doi: 10.1016/j.neuroimage.2012.10.063. Epub 2012 Oct 27.
Animal models of predator defense distinguish qualitatively different behavioral modes that are activated at increasing levels of predation threat. A defense mode observed at intermediate threat levels is freezing: a cessation of locomotion that is characterized by a parasympathetically dominated autonomic nervous system response that causes heart rate deceleration, or fear bradycardia. Studies in rodents have shown that freezing depends on amygdalar projections to the periaqueductal grey (PAG). In humans, freezing-like behaviors are implicated in development and maintenance of psychopathology, but neural mechanisms underlying freezing or its characteristic autonomic response profile have not been identified. Here, we combined event-related blood oxygenation level-dependent functional MRI (BOLD-fMRI) with autonomic response measures in a picture viewing paradigm to probe activity and interconnectivity within the amygdala-PAG pathway and test for an association with parasympathetic as opposed to sympathetic activation. In response to negatively arousing pictures, we observed parasympathetic (bradycardia) and sympathetic (pupil dilation) autonomic responses, BOLD responses in the amygdala and PAG, and effective connectivity between these regions. Critically, BOLD responses in the PAG to negative pictures correlated on a trial-by-trial basis with bradycardia but not pupil dilation. This correlation with bradycardia remained significant when partialling out pupil dilation. Additionally, activity in regions associated with motor planning and inhibition mirrored the PAG response. Thus, our findings implicate the human PAG in a parasympathetically dominated defense mode that subserves a state of attentive immobility. Mechanistic insight into this qualitatively distinct defense mode may importantly advance translational models of anxiety disorders.
捕食防御的动物模型区分了在不断增加的捕食威胁水平下被激活的质的不同的行为模式。在中等威胁水平观察到的一种防御模式是僵住:运动停止,其特征是副交感神经主导的自主神经系统反应,导致心率减慢,即恐惧性心动过缓。对啮齿动物的研究表明,僵住取决于杏仁核向导水管周围灰质(PAG)的投射。在人类中,类似僵住的行为与精神病理学的发展和维持有关,但僵住或其特征性自主反应特征的神经机制尚未确定。在这里,我们在图片观看范式中将事件相关的血氧水平依赖性功能磁共振成像(BOLD-fMRI)与自主反应测量相结合,以探究杏仁核-PAG通路内的活动和相互连接,并测试与副交感神经激活而非交感神经激活的关联。对引发负面情绪的图片的反应,我们观察到副交感神经(心动过缓)和交感神经(瞳孔扩张)的自主反应、杏仁核和PAG中的BOLD反应,以及这些区域之间的有效连接。至关重要的是,PAG对负面图片的BOLD反应在逐次试验的基础上与心动过缓相关,而与瞳孔扩张无关。在排除瞳孔扩张的影响后,这种与心动过缓的相关性仍然显著。此外,与运动计划和抑制相关区域的活动反映了PAG的反应。因此,我们的研究结果表明,人类PAG参与了一种以副交感神经为主导的防御模式,这种模式有助于维持一种警觉性不动的状态。对这种质的不同的防御模式的机制性洞察可能会显著推进焦虑症的转化模型。