Department of Electrical and Computer Engineering, University of Alberta, 2nd Floor ECERF, Edmonton, Alberta T6G 2V4, Canada.
J Chromatogr A. 2012 Nov 30;1266:168-74. doi: 10.1016/j.chroma.2012.10.020. Epub 2012 Oct 12.
Reversed phase thin layer chromatography (TLC) or high performance thin layer chromatography (HPTLC) plates modified with C18, C8 or C2 to provide the silica-gel stationary phase with different polarities are available on the market, however, reversed phase plates with tunable polarity have not been reported. Given the limited variety of reversed phase plates, mobile phase composition optimization is necessary to obtain better separation of analytes with similar characteristics, which is often a time consuming step. We present polarity-adjustable reversed phase ultrathin-layer chromatography (UTLC) plates, which simplifies the mobile phase screening process and greatly expands the selection of reversed phase plates. The plates were fabricated on glass substrates with SiO(2) nanopillars deposited using the glancing angle deposition (GLAD) technique. SiO(2) nanopillars were functionalized with octadecyltrichlorosilane to generate a super hydrophobic stationary phase. Unlike commercial silica-gel based stationary phases, the isolated nanopillar architecture presented here exposes a high surface area to post-fabrication surface treatments. In our work, an O(2) plasma treatment at different powers, pressures and exposure times was used to shorten the silane carbon chain and introduce COOH groups to the surface, producing plates with finely tunable polarities. Separation of a model dye mixture of Sudan blue and Sudan IV confirmed the tuning of surface polarities by measurement of retention behavior changes. The dye elution order reversed as a result of the change in surface polarity. When the same plasma treatment process was tested on commercial reversed phase plates, separation behavior did not change because the disordered and tortuous silica gel restricts the accessible surface area. Plasma treatment of GLAD structures with highly accessible surfaces improved control over interfacial properties, producing better reverse phase separations.
反相薄层色谱(TLC)或高效薄层色谱(HPTLC)板经 C18、C8 或 C2 修饰,可提供具有不同极性的硅胶固定相,但尚未报道具有可调极性的反相板。鉴于反相板种类有限,需要优化流动相组成,以获得具有相似特性的分析物更好的分离效果,这通常是一个耗时的步骤。我们提出了可调极性反相超薄层色谱(UTLC)板,简化了流动相筛选过程,大大扩展了反相板的选择范围。这些板是在玻璃基板上用掠角沉积(GLAD)技术沉积的 SiO2 纳米柱制造的。SiO2 纳米柱用十八烷基三氯硅烷功能化,生成超疏水固定相。与商用硅胶固定相不同,这里提出的孤立纳米柱结构在经过后处理表面处理后具有高表面积。在我们的工作中,使用不同功率、压力和暴露时间的 O2 等离子体处理来缩短硅烷碳链并在表面引入 COOH 基团,从而产生具有精细可调极性的板。苏丹蓝和苏丹 IV 模型染料混合物的分离证实了通过保留行为变化测量来调整表面极性。由于表面极性的变化,染料洗脱顺序发生反转。当相同的等离子体处理过程在商用反相板上进行测试时,由于无序和曲折的硅胶限制了可及表面积,分离行为没有改变。具有高可及表面积的 GLAD 结构的等离子体处理改善了对界面性质的控制,产生了更好的反相分离。