Suppr超能文献

节律性爆发的钠钙机制在 Pre-Bötzinger 复合体兴奋性神经网络中的作用:一项计算建模研究。

Sodium and calcium mechanisms of rhythmic bursting in excitatory neural networks of the pre-Bötzinger complex: a computational modelling study.

机构信息

Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.

出版信息

Eur J Neurosci. 2013 Jan;37(2):212-30. doi: 10.1111/ejn.12042. Epub 2012 Nov 4.

Abstract

The neural mechanisms generating rhythmic bursting activity in the mammalian brainstem, particularly in the pre-Bötzinger complex (pre-BötC), which is involved in respiratory rhythm generation, and in the spinal cord (e.g. locomotor rhythmic activity) that persist after blockade of synaptic inhibition remain poorly understood. Experimental studies in rodent medullary slices containing the pre-BötC identified two mechanisms that could potentially contribute to the generation of rhythmic bursting: one based on the persistent Na(+) current (I(NaP)), and the other involving the voltage-gated Ca(2+) current (I(Ca)) and the Ca(2+) -activated nonspecific cation current (I(CAN)), activated by intracellular Ca(2+) accumulated from extracellular and intracellular sources. However, the involvement and relative roles of these mechanisms in rhythmic bursting are still under debate. In this theoretical/modelling study, we investigated Na(+)-dependent and Ca(2+)-dependent bursting generated in single cells and heterogeneous populations of synaptically interconnected excitatory neurons with I(NaP) and I(Ca) randomly distributed within populations. We analysed the possible roles of network connections, ionotropic and metabotropic synaptic mechanisms, intracellular Ca(2+) release, and the Na(+)/K(+) pump in rhythmic bursting generated under different conditions. We show that a heterogeneous population of excitatory neurons can operate in different oscillatory regimes with bursting dependent on I(NaP) and/or I(CAN), or independent of both. We demonstrate that the operating bursting mechanism may depend on neuronal excitation, synaptic interactions within the network, and the relative expression of particular ionic currents. The existence of multiple oscillatory regimes and their state dependence demonstrated in our models may explain different rhythmic activities observed in the pre-BötC and other brainstem/spinal cord circuits under different experimental conditions.

摘要

哺乳动物脑干中产生节律性爆发活动的神经机制,特别是在参与呼吸节律产生的前脑桥(pre-BötC)和脊髓中(例如运动节律性活动),在抑制性突触阻断后仍然知之甚少。在包含 pre-BötC 的啮齿动物延髓切片的实验研究中,确定了两种可能有助于产生节律性爆发的机制:一种基于持续的钠离子电流(I(NaP)),另一种涉及电压门控钙离子电流(I(Ca))和钙离子激活的非特异性阳离子电流(I(CAN)),由细胞外和细胞内来源的细胞内钙离子积累激活。然而,这些机制在节律性爆发中的参与和相对作用仍存在争议。在这项理论/建模研究中,我们研究了具有 I(NaP)和 I(Ca)随机分布的突触连接兴奋性神经元的单个细胞和异质群体中产生的钠依赖性和钙依赖性爆发。我们分析了网络连接、离子型和代谢型突触机制、细胞内钙离子释放以及钠/钾泵在不同条件下产生节律性爆发的可能作用。我们表明,兴奋性神经元的异质群体可以在不同的振荡状态下工作,爆发依赖于 I(NaP)和/或 I(CAN),或者独立于两者。我们证明,工作爆发机制可能取决于神经元兴奋、网络内的突触相互作用以及特定离子电流的相对表达。我们模型中演示的多个振荡状态及其状态依赖性的存在可能解释了在不同实验条件下 pre-BötC 和其他脑干/脊髓回路中观察到的不同节律性活动。

相似文献

2
Rhythmic bursting in the pre-Bötzinger complex: mechanisms and models.
Prog Brain Res. 2014;209:1-23. doi: 10.1016/B978-0-444-63274-6.00001-1.
3
Modeling the effects of extracellular potassium on bursting properties in pre-Bötzinger complex neurons.
J Comput Neurosci. 2016 Apr;40(2):231-45. doi: 10.1007/s10827-016-0594-8. Epub 2016 Feb 22.
8
Endogenous rhythm generation in the pre-Bötzinger complex and ionic currents: modelling and in vitro studies.
Eur J Neurosci. 2003 Jul;18(2):239-57. doi: 10.1046/j.1460-9568.2003.02739.x.
9
Cooperation of intrinsic bursting and calcium oscillations underlying activity patterns of model pre-Bötzinger complex neurons.
J Comput Neurosci. 2013 Apr;34(2):345-66. doi: 10.1007/s10827-012-0425-5. Epub 2012 Sep 28.

引用本文的文献

1
The road toward a physiological control of artificial respiration: the role of bio-inspired neuronal networks.
Front Neurosci. 2025 Aug 28;19:1638547. doi: 10.3389/fnins.2025.1638547. eCollection 2025.
2
Ionic Mechanisms Underlying Bistability in Spinal Motoneurons: Insights from a Computational Model.
bioRxiv. 2025 Jun 10:2025.06.06.658369. doi: 10.1101/2025.06.06.658369.
5
Interdependence of cellular and network properties in respiratory rhythmogenesis.
bioRxiv. 2023 Nov 2:2023.10.30.564834. doi: 10.1101/2023.10.30.564834.
6
Bursting Dynamics Based on the Persistent Na and Na/K Pump Currents: A Dynamic Clamp Approach.
eNeuro. 2023 Aug 18;10(8). doi: 10.1523/ENEURO.0331-22.2023. Print 2023 Aug.
8
Inspiratory rhythm generation is stabilized by .
J Neurophysiol. 2022 Jul 1;128(1):181-196. doi: 10.1152/jn.00150.2022. Epub 2022 Jun 8.
10
Advancing respiratory-cardiovascular physiology with the working heart-brainstem preparation over 25 years.
J Physiol. 2022 May;600(9):2049-2075. doi: 10.1113/JP281953. Epub 2022 Apr 7.

本文引用的文献

2
Preface. Breathe, walk and chew: the neural challenge: part II.
Prog Brain Res. 2011;188:ix. doi: 10.1016/B978-0-444-53825-3.00022-X.
4
Outward Currents Contributing to Inspiratory Burst Termination in preBötzinger Complex Neurons of Neonatal Mice Studied in Vitro.
Front Neural Circuits. 2010 Nov 29;4:124. doi: 10.3389/fncir.2010.00124. eCollection 2010.
5
Two types of independent bursting mechanisms in inspiratory neurons: an integrative model.
J Comput Neurosci. 2011 Jun;30(3):515-28. doi: 10.1007/s10827-010-0274-z. Epub 2010 Sep 14.
6
Segmental oscillators in axial motor circuits of the salamander: distribution and bursting mechanisms.
J Neurophysiol. 2010 Nov;104(5):2677-92. doi: 10.1152/jn.00479.2010. Epub 2010 Sep 1.
7
Flufenamic acid decreases neuronal excitability through modulation of voltage-gated sodium channel gating.
J Physiol. 2010 Oct 15;588(Pt 20):3869-82. doi: 10.1113/jphysiol.2010.193037. Epub 2010 Aug 19.
8
State-dependent interactions between excitatory neuromodulators in the neuronal control of breathing.
J Neurosci. 2010 Jun 16;30(24):8251-62. doi: 10.1523/JNEUROSCI.5361-09.2010.
9
Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations.
Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2939-44. doi: 10.1073/pnas.0808776106. Epub 2009 Feb 5.
10
Asymmetric control of inspiratory and expiratory phases by excitability in the respiratory network of neonatal mice in vitro.
J Physiol. 2009 Mar 15;587(Pt 6):1217-31. doi: 10.1113/jphysiol.2008.164079. Epub 2009 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验