Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
J Physiol. 2010 Oct 15;588(Pt 20):3869-82. doi: 10.1113/jphysiol.2010.193037. Epub 2010 Aug 19.
The electrophysiological phenotype of individual neurons critically depends on the biophysical properties of the voltage-gated channels they express. Differences in sodium channel gating are instrumental in determining the different firing phenotypes of pyramidal cells and interneurons; moreover, sodium channel modulation represents an important mechanism of action for many widely used CNS drugs. Flufenamic acid (FFA) is a non-steroidal anti-inflammatory drug that has been long used as a blocker of calcium-dependent cationic conductances. Here we show that FFA inhibits voltage-gated sodium currents in hippocampal pyramidal neurons; this effect is dose-dependent with IC(50) = 189 μm. We used whole-cell and nucleated patch recordings to investigate the mechanisms of FFA modulation of TTX-sensitive voltage-gated sodium current. Our data show that flufenamic acid slows down the inactivation process of the sodium current, while shifting the inactivation curve ~10 mV toward more hyperpolarized potentials. The recovery from inactivation is also affected in a voltage-dependent way, resulting in slower recovery at hyperpolarized potentials. Recordings from acute slices demonstrate that FFA reduces repetitive- and abolishes burst-firing in CA1 pyramidal neurons. A computational model based on our data was employed to better understand the mechanisms of FFA action. Simulation data support the idea that FFA acts via a novel mechanism by reducing the voltage dependence of the sodium channel fast inactivation rates. These effects of FFA suggest that it may be an effective anti-epileptic drug.
个体神经元的电生理表型主要取决于其表达的电压门控通道的生物物理特性。钠通道门控的差异对于确定锥体细胞和中间神经元的不同放电表型起着重要作用;此外,钠通道调制是许多广泛使用的中枢神经系统药物的重要作用机制。氟芬那酸(FFA)是一种非甾体抗炎药,长期以来一直被用作钙依赖性阳离子电导的阻断剂。在这里,我们表明 FFA 抑制海马锥体神经元中的电压门控钠电流;这种作用呈剂量依赖性,IC50=189μm。我们使用全细胞和去核斑记录来研究 FFA 调节 TTX 敏感电压门控钠电流的机制。我们的数据表明,氟芬那酸会减慢钠电流的失活过程,同时将失活曲线向更超极化的电位移动约 10mV。失活后的恢复也以电压依赖性的方式受到影响,导致在超极化电位下恢复较慢。急性切片记录表明,FFA 可减少 CA1 锥体神经元的重复放电并消除爆发放电。基于我们数据的计算模型被用来更好地理解 FFA 作用的机制。模拟数据支持这样一种观点,即 FFA 通过降低钠通道快速失活速率的电压依赖性来发挥作用的新机制。FFA 的这些作用表明它可能是一种有效的抗癫痫药物。