Conservation Genetics Section, Senckenberg Gesellschaft für Naturforschung, Clamecystrasse 12, 63571, Gelnhausen, Germany.
Oecologia. 2013 Jun;172(2):585-94. doi: 10.1007/s00442-012-2517-3. Epub 2012 Nov 3.
Little is known about intraspecific variation in fitness performance in response to thermal stress among natural populations and how this relates to evolutionary aspects of species ecology. In this study, population growth rate (PGR; a composite fitness measure) varied among five natural Chironomus riparius populations sampled across a climatic gradient when subjected to three temperature treatments reflecting the typical range of summer habitat temperatures (20, 24 and 28 °C). The variation could be explained by a complex model including effects of genetic drift, genetic diversity and adaptation to average temperature during the warmest month, in addition to experimental temperature. All populations suffered a decrease in PGR from 20 to 28 °C and ΔPGR was significantly correlated with the respective average habitat temperature in the warmest month-populations from warmer areas showing lower ΔPGR. This implies that long-term exposure to higher temperatures in the warmest month (the key reproductive period for C. riparius) is likely to be a key selective force influencing fitness at higher temperatures. A comparison of phenotypic divergence and neutral genetic differentiation revealed that one phenotypic trait--the number of fertile egg masses per female--appeared to be under positive selection in some populations. Our findings support a role for response to temperature selection along a climatic gradient and suggest population history is a key determinant of intraspecific fitness variation. We stress the importance of integrating different types of data (climatic, experimental, genetic) in order to understand the effects of global climate change on biodiversity.
关于自然种群对热应激的适应能力的种内变异性以及这与物种生态学的进化方面有何关系,人们知之甚少。在这项研究中,当五个自然种群的 Chironomus riparius 种群受到反映夏季栖息地温度典型范围的三种温度处理(20、24 和 28°C)时,种群增长率(PGR;综合适应度衡量标准)在五个自然种群之间存在差异。这种差异可以通过一个复杂的模型来解释,该模型包括遗传漂变、遗传多样性和对最暖月份平均温度的适应的影响,除了实验温度。所有种群的 PGR 都从 20°C 下降到 28°C,ΔPGR 与最暖月份各自的平均栖息地温度显著相关-来自温暖地区的种群具有较低的 ΔPGR。这意味着长期暴露在最暖月份(C. riparius 的关键繁殖期)较高的温度下可能是影响高温下适应度的关键选择力。表型分歧和中性遗传分化的比较表明,一些种群中一种表型特征-每只雌性的可育卵块数量-似乎受到正选择的影响。我们的研究结果支持了沿着气候梯度对温度选择的作用,并表明种群历史是种内适应能力变化的关键决定因素。我们强调了整合不同类型数据(气候、实验、遗传)的重要性,以便了解全球气候变化对生物多样性的影响。