Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa Ottawa, ON, Canada.
Front Endocrinol (Lausanne). 2012 Nov 2;3:130. doi: 10.3389/fendo.2012.00130. eCollection 2012.
Dopamine (DA) is a major neurotransmitter important for neuroendocrine control and recent studies have described genomic signaling pathways activated and inhibited by DA agonists and antagonists in the goldfish brain. Here we perform a meta-type analysis using microarray datasets from experiments conducted with female goldfish to characterize the gene expression responses that underlie dopaminergic signaling. Sexually mature, pre-spawning [gonadosomatic index (GSI) = 4.5 ± 1.3%] or sexually regressing (GSI = 3 ± 0.4%) female goldfish (15-40 g) injected intraperitoneally with either SKF 38393, LY 171555, SCH 23390, sulpiride, or a combination of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and α-methyl-p-tyrosine. Microarray meta-type analysis identified 268 genes in the telencephalon and hypothalamus as having reciprocal (i.e., opposite between agonism and antagonism/depletion) fold change responses, suggesting that these transcripts are likely targets for DA-mediated regulation. Noteworthy genes included ependymin, vimentin, and aromatase, genes that support the significance of DA in neuronal plasticity and tissue remodeling. Sub-network enrichment analysis (SNEA) was used to identify common gene regulators and binding proteins associated with the differentially expressed genes mediated by DA. SNEA analysis identified gene expression targets that were related to three major categories that included cell signaling (STAT3, SP1, SMAD, Jun/Fos), immune response (IL-6, IL-1β, TNFs, cytokine, NF-κB), and cell proliferation and growth (IGF1, TGFβ1). These gene networks are also known to be associated with neurodegenerative disorders such as Parkinsons' disease, well-known to be associated with loss of dopaminergic neurons. This study identifies genes and networks that underlie DA signaling in the vertebrate CNS and provides targets that may be key neuroendocrine regulators. The results provide a foundation for future work on dopaminergic regulation of gene expression in fish model systems.
多巴胺(DA)是一种重要的神经递质,对神经内分泌控制具有重要作用。最近的研究描述了 DA 激动剂和拮抗剂在金鱼脑中激活和抑制的基因组信号通路。在这里,我们使用来自雌性金鱼实验的微阵列数据集进行元类型分析,以表征多巴胺信号传导所依赖的基因表达反应。性成熟、产卵前(性腺指数(GSI)= 4.5±1.3%)或性退化(GSI= 3±0.4%)的雌性金鱼(15-40 克)经腹腔注射 SKF 38393、LY 171555、SCH 23390、sulpiride 或 1-甲基-4-苯基-1,2,3,6-四氢吡啶和α-甲基-p-酪氨酸的组合。微阵列元类型分析鉴定了脑和下丘脑中的 268 个基因具有互惠(即激动剂和拮抗剂/耗竭之间相反)的折叠变化反应,表明这些转录物可能是 DA 介导调节的靶标。值得注意的基因包括促黑激素、波形蛋白和芳香化酶,这些基因支持 DA 在神经元可塑性和组织重塑中的重要性。子网络富集分析(SNEA)用于鉴定与 DA 介导的差异表达基因相关的常见基因调节剂和结合蛋白。SNEA 分析鉴定了与三个主要类别相关的基因表达靶标,包括细胞信号(STAT3、SP1、SMAD、Jun/Fos)、免疫反应(IL-6、IL-1β、TNFs、细胞因子、NF-κB)和细胞增殖和生长(IGF1、TGFβ1)。这些基因网络也与帕金森病等神经退行性疾病有关,众所周知,这些疾病与多巴胺能神经元的丧失有关。这项研究确定了神经递质在脊椎动物中枢神经系统中的信号通路,并提供了可能是关键神经内分泌调节剂的靶点。该研究结果为鱼类模型系统中多巴胺对基因表达的调控研究提供了基础。