Department of Biology and Canadian Rivers Institute, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5.
Gen Comp Endocrinol. 2012 May 1;176(3):314-20. doi: 10.1016/j.ygcen.2011.12.006. Epub 2011 Dec 19.
Neuroendocrine systems integrate both extrinsic and intrinsic signals to regulate virtually all aspects of an animal's physiology. In aquatic toxicology, studies have shown that pollutants are capable of disrupting the neuroendocrine system of teleost fish, and many chemicals found in the environment can also have a neurotoxic mode of action. Omics approaches are now used to better understand cell signaling cascades underlying fish neurophysiology and the control of pituitary hormone release, in addition to identifying adverse effects of pollutants in the teleostean central nervous system. For example, both high throughput genomics and proteomic investigations of molecular signaling cascades for both neurotransmitter and nuclear receptor agonists/antagonists have been reported. This review highlights recent studies that have utilized quantitative proteomics methods such as 2D differential in-gel electrophoresis (DIGE) and isobaric tagging for relative and absolute quantitation (iTRAQ) in neuroendocrine regions and uses these examples to demonstrate the challenges of using proteomics in neuroendocrinology and neurotoxicology research. To begin to characterize the teleost neuroproteome, we functionally annotated 623 unique proteins found in the fish hypothalamus and telencephalon. These proteins have roles in biological processes that include synaptic transmission, ATP production, receptor activity, cell structure and integrity, and stress responses. The biological processes most represented by proteins detected in the teleost neuroendocrine brain included transport (8.4%), metabolic process (5.5%), and glycolysis (4.8%). We provide an example of using sub-network enrichment analysis (SNEA) to identify protein networks in the fish hypothalamus in response to dopamine receptor signaling. Dopamine signaling altered the abundance of proteins that are binding partners of microfilaments, integrins, and intermediate filaments, consistent with data suggesting dopaminergic regulation of neuronal stability and structure. Lastly, for fish neuroendocrine studies using both high-throughput genomics and proteomics, we compare gene and protein relationships in the hypothalamus and demonstrate that correlation is often poor for single time point experiments. These studies highlight the need for additional time course analyses to better understand gene-protein relationships and adverse outcome pathways. This is important if both transcriptomics and proteomics are to be used together to investigate neuroendocrine signaling pathways or as bio-monitoring tools in ecotoxicology.
神经内分泌系统整合了外在和内在信号,调节动物生理学的几乎所有方面。在水生毒理学中,研究表明污染物能够破坏鱼类的神经内分泌系统,而环境中许多化学物质也可能具有神经毒性作用模式。现在,组学方法被用于更好地理解鱼类神经生理学和垂体激素释放的细胞信号级联,除了识别污染物对硬骨鱼中枢神经系统的不良影响。例如,已经报道了对神经递质和核受体激动剂/拮抗剂的分子信号级联的高通量基因组学和蛋白质组学研究。本综述重点介绍了最近利用定量蛋白质组学方法(如二维差异凝胶电泳 (DIGE) 和等重标记相对和绝对定量 (iTRAQ))研究神经内分泌区的研究,并使用这些例子来说明在神经内分泌学和神经毒理学研究中使用蛋白质组学的挑战。为了开始描述硬骨鱼神经保护组,我们对在鱼类下丘脑和端脑中发现的 623 种独特蛋白质进行了功能注释。这些蛋白质在包括突触传递、ATP 产生、受体活性、细胞结构和完整性以及应激反应在内的生物学过程中发挥作用。在硬骨鱼神经内分泌脑中检测到的蛋白质所代表的生物学过程包括运输(8.4%)、代谢过程(5.5%)和糖酵解(4.8%)。我们提供了一个使用子网富集分析 (SNEA) 的示例,以识别鱼类下丘脑多巴胺受体信号转导的蛋白质网络。多巴胺信号改变了微丝、整合素和中间丝的结合伴侣蛋白的丰度,这与多巴胺能调节神经元稳定性和结构的数据一致。最后,对于使用高通量基因组学和蛋白质组学的鱼类神经内分泌研究,我们比较了下丘脑的基因和蛋白质关系,并表明单点实验的相关性通常较差。这些研究强调需要进行额外的时间过程分析,以更好地理解基因-蛋白质关系和不良结果途径。如果要将转录组学和蛋白质组学一起用于研究神经内分泌信号通路或作为生态毒理学中的生物监测工具,这一点很重要。