Suppr超能文献

音乐在我们耳边:音乐音色感知的生物学基础。

Music in our ears: the biological bases of musical timbre perception.

机构信息

Department of Electrical and Computer Engineering, Center for Language and Speech Processing, Johns Hopkins University, Baltimore, Maryland, USA.

出版信息

PLoS Comput Biol. 2012;8(11):e1002759. doi: 10.1371/journal.pcbi.1002759. Epub 2012 Nov 1.

Abstract

Timbre is the attribute of sound that allows humans and other animals to distinguish among different sound sources. Studies based on psychophysical judgments of musical timbre, ecological analyses of sound's physical characteristics as well as machine learning approaches have all suggested that timbre is a multifaceted attribute that invokes both spectral and temporal sound features. Here, we explored the neural underpinnings of musical timbre. We used a neuro-computational framework based on spectro-temporal receptive fields, recorded from over a thousand neurons in the mammalian primary auditory cortex as well as from simulated cortical neurons, augmented with a nonlinear classifier. The model was able to perform robust instrument classification irrespective of pitch and playing style, with an accuracy of 98.7%. Using the same front end, the model was also able to reproduce perceptual distance judgments between timbres as perceived by human listeners. The study demonstrates that joint spectro-temporal features, such as those observed in the mammalian primary auditory cortex, are critical to provide the rich-enough representation necessary to account for perceptual judgments of timbre by human listeners, as well as recognition of musical instruments.

摘要

音品是使人类和其他动物能够区分不同声源的声音属性。基于对音乐音品的心理物理判断、对声音物理特征的生态分析以及机器学习方法的研究都表明,音品是一种多方面的属性,它既涉及到光谱特征又涉及到时间特征。在这里,我们探讨了音乐音品的神经基础。我们使用了一种基于哺乳动物初级听觉皮层中超过一千个神经元以及模拟皮层神经元的频谱-时间感受野的神经计算框架,并结合了非线性分类器。该模型能够在不考虑音高和演奏风格的情况下,对乐器进行稳健的分类,准确率达到 98.7%。使用相同的前端,该模型还能够再现人类听众感知到的音品之间的感知距离判断。该研究表明,联合的频谱-时间特征,如在哺乳动物初级听觉皮层中观察到的特征,对于提供丰富的表示是至关重要的,这对于解释人类听众对音品的感知判断以及识别乐器都是必要的。

相似文献

1
Music in our ears: the biological bases of musical timbre perception.
PLoS Comput Biol. 2012;8(11):e1002759. doi: 10.1371/journal.pcbi.1002759. Epub 2012 Nov 1.
2
Representations of Pitch and Timbre Variation in Human Auditory Cortex.
J Neurosci. 2017 Feb 1;37(5):1284-1293. doi: 10.1523/JNEUROSCI.2336-16.2016. Epub 2016 Dec 26.
3
Behavioral and neural correlates of perceived and imagined musical timbre.
Neuropsychologia. 2004;42(9):1281-92. doi: 10.1016/j.neuropsychologia.2003.12.017.
4
Perception of musical timbre by cochlear implant listeners: a multidimensional scaling study.
Ear Hear. 2013 Jul-Aug;34(4):426-36. doi: 10.1097/AUD.0b013e31827535f8.
5
Cortical Correlates of Attention to Auditory Features.
J Neurosci. 2019 Apr 24;39(17):3292-3300. doi: 10.1523/JNEUROSCI.0588-18.2019. Epub 2019 Feb 25.
6
Neurophysiological time course of timbre-induced music-like perception.
J Neurophysiol. 2023 Aug 1;130(2):291-302. doi: 10.1152/jn.00042.2023. Epub 2023 Jun 28.
7
Temporal and spectral cues for musical timbre perception in electric hearing.
J Speech Lang Hear Res. 2011 Jun;54(3):981-94. doi: 10.1044/1092-4388(2010/10-0196). Epub 2010 Nov 8.
8
Encoding of natural timbre dimensions in human auditory cortex.
Neuroimage. 2018 Feb 1;166:60-70. doi: 10.1016/j.neuroimage.2017.10.050. Epub 2017 Nov 4.
9
Impaired perception of temporal fine structure and musical timbre in cochlear implant users.
Hear Res. 2011 Oct;280(1-2):192-200. doi: 10.1016/j.heares.2011.05.017. Epub 2011 May 31.
10
Learning metrics on spectrotemporal modulations reveals the perception of musical instrument timbre.
Nat Hum Behav. 2021 Mar;5(3):369-377. doi: 10.1038/s41562-020-00987-5. Epub 2020 Nov 30.

引用本文的文献

1
A hierarchy of processing complexity and timescales for natural sounds in the human auditory cortex.
Proc Natl Acad Sci U S A. 2025 May 6;122(18):e2412243122. doi: 10.1073/pnas.2412243122. Epub 2025 Apr 28.
2
A hierarchy of processing complexity and timescales for natural sounds in human auditory cortex.
bioRxiv. 2024 May 26:2024.05.24.595822. doi: 10.1101/2024.05.24.595822.
3
Sleep deprivation detected by voice analysis.
PLoS Comput Biol. 2024 Feb 5;20(2):e1011849. doi: 10.1371/journal.pcbi.1011849. eCollection 2024 Feb.
4
Hearing as adaptive cascaded envelope interpolation.
Commun Biol. 2023 Jun 24;6(1):671. doi: 10.1038/s42003-023-05040-5.
5
Two stages of bandwidth scaling drives efficient neural coding of natural sounds.
PLoS Comput Biol. 2023 Feb 14;19(2):e1010862. doi: 10.1371/journal.pcbi.1010862. eCollection 2023 Feb.
6
A Novel Piano Arrangement Timbre Intelligent Recognition System Using Multilabel Classification Technology and KNN Algorithm.
Comput Intell Neurosci. 2022 Jul 9;2022:2205936. doi: 10.1155/2022/2205936. eCollection 2022.
7
A Review of Research on the Neurocognition for Timbre Perception.
Front Psychol. 2022 Mar 29;13:869475. doi: 10.3389/fpsyg.2022.869475. eCollection 2022.
8
Pleasantness Ratings of Musical Dyads in Cochlear Implant Users.
Brain Sci. 2021 Dec 28;12(1):33. doi: 10.3390/brainsci12010033.
9
High-Order Areas and Auditory Cortex Both Represent the High-Level Event Structure of Music.
J Cogn Neurosci. 2022 Mar 5;34(4):699-714. doi: 10.1162/jocn_a_01815.
10
Time-frequency scattering accurately models auditory similarities between instrumental playing techniques.
EURASIP J Audio Speech Music Process. 2021;2021(1):3. doi: 10.1186/s13636-020-00187-z. Epub 2021 Jan 11.

本文引用的文献

1
Fast recognition of musical sounds based on timbre.
J Acoust Soc Am. 2012 May;131(5):4124-33. doi: 10.1121/1.3701865.
2
The Timbre Toolbox: extracting audio descriptors from musical signals.
J Acoust Soc Am. 2011 Nov;130(5):2902-16. doi: 10.1121/1.3642604.
3
Interhemispheric differences in auditory processing revealed by fMRI in awake rhesus monkeys.
Cereb Cortex. 2012 Apr;22(4):838-53. doi: 10.1093/cercor/bhr150. Epub 2011 Jun 27.
4
A temporal hierarchy for conspecific vocalization discrimination in humans.
J Neurosci. 2010 Aug 18;30(33):11210-21. doi: 10.1523/JNEUROSCI.2239-10.2010.
5
Cortical representation of natural complex sounds: effects of acoustic features and auditory object category.
J Neurosci. 2010 Jun 2;30(22):7604-12. doi: 10.1523/JNEUROSCI.0296-10.2010.
6
Laminar diversity of dynamic sound processing in cat primary auditory cortex.
J Neurophysiol. 2010 Jan;103(1):192-205. doi: 10.1152/jn.00624.2009. Epub 2009 Oct 28.
7
Nonlinear spectrotemporal interactions underlying selectivity for complex sounds in auditory cortex.
J Neurosci. 2009 Sep 9;29(36):11192-202. doi: 10.1523/JNEUROSCI.1286-09.2009.
9
Sound categories are represented as distributed patterns in the human auditory cortex.
Curr Biol. 2009 Mar 24;19(6):498-502. doi: 10.1016/j.cub.2009.01.066. Epub 2009 Mar 5.
10
"Who" is saying "what"? Brain-based decoding of human voice and speech.
Science. 2008 Nov 7;322(5903):970-3. doi: 10.1126/science.1164318.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验