Suppr超能文献

学习声谱时变调制的度量可以揭示对乐器音色的感知。

Learning metrics on spectrotemporal modulations reveals the perception of musical instrument timbre.

机构信息

Schulich School of Music, McGill University, Montreal, Canada.

Aix Marseille Univ, CNRS, PRISM, LIS, Marseille, France.

出版信息

Nat Hum Behav. 2021 Mar;5(3):369-377. doi: 10.1038/s41562-020-00987-5. Epub 2020 Nov 30.

Abstract

Humans excel at using sounds to make judgements about their immediate environment. In particular, timbre is an auditory attribute that conveys crucial information about the identity of a sound source, especially for music. While timbre has been primarily considered to occupy a multidimensional space, unravelling the acoustic correlates of timbre remains a challenge. Here we re-analyse 17 datasets from published studies between 1977 and 2016 and observe that original results are only partially replicable. We use a data-driven computational account to reveal the acoustic correlates of timbre. Human dissimilarity ratings are simulated with metrics learned on acoustic spectrotemporal modulation models inspired by cortical processing. We observe that timbre has both generic and experiment-specific acoustic correlates. These findings provide a broad overview of former studies on musical timbre and identify its relevant acoustic substrates according to biologically inspired models.

摘要

人类擅长利用声音来判断周围环境。特别是音色是一种听觉属性,它传递着有关声源身份的关键信息,尤其是在音乐中。虽然音色主要被认为占据多维空间,但揭示音色的声学相关性仍然是一个挑战。在这里,我们重新分析了 1977 年至 2016 年期间发表的 17 个数据集,结果发现原始结果仅部分可复制。我们使用数据驱动的计算方法来揭示音色的声学相关性。我们使用基于皮质处理的受启发的频谱时变调制模型来学习度量标准,以此模拟人类的不相似度评分。我们发现,音色既有通用的声学相关性,也有特定于实验的声学相关性。这些发现为以前关于音乐音色的研究提供了广泛的概述,并根据受生物启发的模型确定了其相关的声学基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验