Suppr超能文献

解析小肠结肠炎耶尔森氏菌脂 A 的酰化模式。

Deciphering the acylation pattern of Yersinia enterocolitica lipid A.

机构信息

Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears, Recinto Hospital Joan March, Bunyola, Spain.

出版信息

PLoS Pathog. 2012;8(10):e1002978. doi: 10.1371/journal.ppat.1002978. Epub 2012 Oct 25.

Abstract

Pathogenic bacteria may modify their surface to evade the host innate immune response. Yersinia enterocolitica modulates its lipopolysaccharide (LPS) lipid A structure, and the key regulatory signal is temperature. At 21°C, lipid A is hexa-acylated and may be modified with aminoarabinose or palmitate. At 37°C, Y. enterocolitica expresses a tetra-acylated lipid A consistent with the 3'-O-deacylation of the molecule. In this work, by combining genetic and mass spectrometric analysis, we establish that Y. enterocolitica encodes a lipid A deacylase, LpxR, responsible for the lipid A structure observed at 37°C. Western blot analyses indicate that LpxR exhibits latency at 21°C, deacylation of lipid A is not observed despite the expression of LpxR in the membrane. Aminoarabinose-modified lipid A is involved in the latency. 3-D modelling, docking and site-directed mutagenesis experiments showed that LpxR D31 reduces the active site cavity volume so that aminoarabinose containing Kdo(2)-lipid A cannot be accommodated and, therefore, not deacylated. Our data revealed that the expression of lpxR is negatively controlled by RovA and PhoPQ which are necessary for the lipid A modification with aminoarabinose. Next, we investigated the role of lipid A structural plasticity conferred by LpxR on the expression/function of Y. enterocolitica virulence factors. We present evidence that motility and invasion of eukaryotic cells were reduced in the lpxR mutant grown at 21°C. Mechanistically, our data revealed that the expressions of flhDC and rovA, regulators controlling the flagellar regulon and invasin respectively, were down-regulated in the mutant. In contrast, the levels of the virulence plasmid (pYV)-encoded virulence factors Yops and YadA were not affected in the lpxR mutant. Finally, we establish that the low inflammatory response associated to Y. enterocolitica infections is the sum of the anti-inflammatory action exerted by pYV-encoded YopP and the reduced activation of the LPS receptor by a LpxR-dependent deacylated LPS.

摘要

致病菌可能会改变其表面结构,从而逃避宿主的先天免疫反应。肠耶尔森氏菌(Yersinia enterocolitica)调节其脂多糖(LPS)脂质 A 结构,关键的调节信号是温度。在 21°C 时,脂质 A 为六酰化,并且可能被氨基阿拉伯糖或棕榈酸修饰。在 37°C 时,肠耶尔森氏菌表达四酰化的脂质 A,这与分子 3'-O 去酰化一致。在这项工作中,通过结合遗传和质谱分析,我们确定肠耶尔森氏菌编码一种脂 A 去酰化酶 LpxR,该酶负责在 37°C 时观察到的脂 A 结构。Western blot 分析表明,尽管 LpxR 在膜中表达,但在 21°C 时 LpxR 处于潜伏状态,未观察到脂质 A 的去酰化。氨基阿拉伯糖修饰的脂质 A 参与了潜伏状态。3D 建模、对接和定点突变实验表明,LpxR D31 减小了活性位点腔的体积,使得含有氨基阿拉伯糖的 Kdo(2)-脂质 A 无法容纳,因此不能去酰化。我们的数据表明,lpxR 的表达受 RovA 和 PhoPQ 的负调控,这对于脂质 A 与氨基阿拉伯糖的修饰是必需的。接下来,我们研究了由 LpxR 赋予的脂 A 结构可塑性对肠耶尔森氏菌毒力因子表达/功能的作用。我们提供的证据表明,在 21°C 下生长的 lpxR 突变体的运动性和真核细胞的侵袭性降低。从机制上讲,我们的数据表明,分别控制鞭毛调节子和侵袭素的调控因子 flhDC 和 rovA 的表达下调。相比之下,lpxR 突变体中 pYV 编码的毒力因子 Yops 和 YadA 的水平不受影响。最后,我们确定与肠耶尔森氏菌感染相关的低炎症反应是由 pYV 编码的 YopP 发挥的抗炎作用和由 LpxR 依赖的去酰化 LPS 引起的 LPS 受体激活减少的总和。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d351/3486919/11ac410bb551/ppat.1002978.g001.jpg

相似文献

1
Deciphering the acylation pattern of Yersinia enterocolitica lipid A.
PLoS Pathog. 2012;8(10):e1002978. doi: 10.1371/journal.ppat.1002978. Epub 2012 Oct 25.
2
Role of lipid A acylation in Yersinia enterocolitica virulence.
Infect Immun. 2010 Jun;78(6):2768-81. doi: 10.1128/IAI.01417-09. Epub 2010 Apr 12.
3
Molecular basis of Yersinia enterocolitica temperature-dependent resistance to antimicrobial peptides.
J Bacteriol. 2012 Jun;194(12):3173-88. doi: 10.1128/JB.00308-12. Epub 2012 Apr 13.
6
An outer membrane enzyme encoded by Salmonella typhimurium lpxR that removes the 3'-acyloxyacyl moiety of lipid A.
J Biol Chem. 2006 Aug 4;281(31):21974-21987. doi: 10.1074/jbc.M603527200. Epub 2006 May 16.

引用本文的文献

1
Cpx-signalling in modulates Lipid-A remodelling and resistance to last-resort antimicrobials.
NPJ Antimicrob Resist. 2024;2(1):39. doi: 10.1038/s44259-024-00059-y. Epub 2024 Nov 18.
2
Pathogenicity and virulence of .
Virulence. 2024 Dec;15(1):2316439. doi: 10.1080/21505594.2024.2316439. Epub 2024 Feb 22.
3
Lipid A heterogeneity and its role in the host interactions with pathogenic and commensal bacteria.
Microlife. 2022 Jun 10;3:uqac011. doi: 10.1093/femsml/uqac011. eCollection 2022.
4
Constitutive Phenotypic Modification of Lipid A in Clinical Acinetobacter baumannii Isolates.
Microbiol Spectr. 2022 Aug 31;10(4):e0129522. doi: 10.1128/spectrum.01295-22. Epub 2022 Jul 21.
5
The Role of the Two-Component System PhoP/PhoQ in Intrinsic Resistance of to Polymyxin.
Front Microbiol. 2022 Feb 10;13:758571. doi: 10.3389/fmicb.2022.758571. eCollection 2022.
6
Yersinia remodels epigenetic histone modifications in human macrophages.
PLoS Pathog. 2021 Nov 18;17(11):e1010074. doi: 10.1371/journal.ppat.1010074. eCollection 2021 Nov.
7
Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria.
J Biol Chem. 2020 Jul 24;295(30):10340-10367. doi: 10.1074/jbc.REV120.011473. Epub 2020 Jun 4.
8
Pushing the envelope: LPS modifications and their consequences.
Nat Rev Microbiol. 2019 Jul;17(7):403-416. doi: 10.1038/s41579-019-0201-x.
10
Liquid crystalline bacterial outer membranes are critical for antibiotic susceptibility.
Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):E7587-E7594. doi: 10.1073/pnas.1803975115. Epub 2018 Jul 23.

本文引用的文献

1
Molecular basis of Yersinia enterocolitica temperature-dependent resistance to antimicrobial peptides.
J Bacteriol. 2012 Jun;194(12):3173-88. doi: 10.1128/JB.00308-12. Epub 2012 Apr 13.
4
Role of lipid A acylation in Yersinia enterocolitica virulence.
Infect Immun. 2010 Jun;78(6):2768-81. doi: 10.1128/IAI.01417-09. Epub 2010 Apr 12.
5
Active-site architecture and catalytic mechanism of the lipid A deacylase LpxR of Salmonella typhimurium.
Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1960-4. doi: 10.1073/pnas.0813064106. Epub 2009 Jan 27.
6
Deciphering the unusual acylation pattern of Helicobacter pylori lipid A.
J Bacteriol. 2008 Nov;190(21):7012-21. doi: 10.1128/JB.00667-08. Epub 2008 Aug 29.
8
Yersinia outer proteins: Yops.
Cell Microbiol. 2008 Mar;10(3):557-65. doi: 10.1111/j.1462-5822.2007.01109.x. Epub 2007 Dec 11.
9
Structural biology of membrane-intrinsic beta-barrel enzymes: sentinels of the bacterial outer membrane.
Biochim Biophys Acta. 2008 Sep;1778(9):1881-96. doi: 10.1016/j.bbamem.2007.07.021. Epub 2007 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验