University of Tsukuba, Division of Biomedical Science, Faculty of Medicine, Tsukuba, Japan.
PLoS Pathog. 2012;8(11):e1003003. doi: 10.1371/journal.ppat.1003003. Epub 2012 Nov 1.
It has long been a question whether Staphylococcus aureus, a major human pathogen, is able to develop natural competence for transformation by DNA. We previously showed that a novel staphylococcal secondary sigma factor, SigH, was a likely key component for competence development, but the corresponding gene appeared to be cryptic as its expression could not be detected during growth under standard laboratory conditions. Here, we have uncovered two distinct mechanisms allowing activation of SigH production in a minor fraction of the bacterial cell population. The first is a chromosomal gene duplication rearrangement occurring spontaneously at a low frequency [≤10(-5)], generating expression of a new chimeric sigH gene. The second involves post-transcriptional regulation through an upstream inverted repeat sequence, effectively suppressing expression of the sigH gene. Importantly, we have demonstrated for the first time that S. aureus cells producing active SigH become competent for transformation by plasmid or chromosomal DNA, which requires the expression of SigH-controlled competence genes. Additionally, using DNA from the N315 MRSA strain, we successfully transferred the full length SCCmecII element through natural transformation to a methicillin-sensitive strain, conferring methicillin resistance to the resulting S. aureus transformants. Taken together, we propose a unique model for staphylococcal competence regulation by SigH that could help explain the acquisition of antibiotic resistance genes through horizontal gene transfer in this important pathogen.
金黄色葡萄球菌(Staphylococcus aureus)是一种主要的人类病原体,它是否能够通过 DNA 自然转化为感受态一直是一个问题。我们之前曾表明,一种新型的葡萄球菌次要σ因子 SigH 可能是感受态发育的关键组成部分,但由于其表达在标准实验室条件下的生长过程中无法检测到,因此相应的基因似乎是隐匿的。在这里,我们揭示了两种不同的机制,可以使少数细菌细胞群体中的 SigH 产生得到激活。第一种机制是染色体基因重复重排,其自发发生的频率较低(≤10(-5)),从而产生新的嵌合 sigH 基因的表达。第二种机制涉及通过上游反向重复序列进行转录后调控,有效地抑制了 sigH 基因的表达。重要的是,我们首次证明了产生活性 SigH 的金黄色葡萄球菌细胞能够通过质粒或染色体 DNA 转化为感受态,这需要 SigH 控制的感受态基因的表达。此外,我们使用 N315 耐甲氧西林金黄色葡萄球菌(MRSA)株的 DNA,成功地通过自然转化将完整的 SCCmecII 元件转移到了对甲氧西林敏感的菌株中,从而使所得金黄色葡萄球菌转化子获得了对甲氧西林的抗性。综上所述,我们提出了 SigH 调控葡萄球菌感受态的独特模型,这有助于解释这种重要病原体通过水平基因转移获得抗生素抗性基因的现象。