Suppr超能文献

通过单颗粒电子显微镜直观呈现完整的长尾噬菌体科成员:乳球菌噬菌体 TP901-1 的结构。

Visualizing a complete Siphoviridae member by single-particle electron microscopy: the structure of lactococcal phage TP901-1.

机构信息

Division of Biological Sciences, Imperial College London, South Kensington Campus, London, United Kingdom.

出版信息

J Virol. 2013 Jan;87(2):1061-8. doi: 10.1128/JVI.02836-12. Epub 2012 Nov 7.

Abstract

Tailed phages are genome delivery machines exhibiting unequaled efficiency acquired over more than 3 billion years of evolution. Siphophages from the P335 and 936 families infect the Gram-positive bacterium Lactococcus lactis using receptor-binding proteins anchored to the host adsorption apparatus (baseplate). Crystallographic and electron microscopy (EM) studies have shed light on the distinct adsorption strategies used by phages of these two families, suggesting that they might also rely on different infection mechanisms. Here, we report electron microscopy reconstructions of the whole phage TP901-1 (P335 species) and propose a composite EM model of this gigantic molecular machine. Our results suggest conservation of structural proteins among tailed phages and add to the growing body of evidence pointing to a common evolutionary origin for these virions. Finally, we propose that host adsorption apparatus architectures have evolved in correlation with the nature of the receptors used during infection.

摘要

长尾噬菌体是基因组输送机器,在超过 30 亿年的进化过程中,展现出无与伦比的效率。来自 P335 和 936 家族的丝氨酸噬菌体利用锚定在宿主吸附装置(基板)上的受体结合蛋白感染革兰氏阳性菌乳球菌。晶体学和电子显微镜(EM)研究揭示了这两个家族噬菌体使用的不同吸附策略,表明它们可能也依赖于不同的感染机制。在这里,我们报告了全噬菌体 TP901-1(P335 种)的电子显微镜重建,并提出了这个巨大分子机器的复合 EM 模型。我们的结果表明,长尾噬菌体之间存在结构蛋白的保守性,并为这些病毒粒子具有共同的进化起源提供了更多的证据。最后,我们提出,宿主吸附装置结构的进化与感染过程中使用的受体的性质有关。

相似文献

2
Cryo-electron microscopy structure of lactococcal siphophage 1358 virion.
J Virol. 2014 Aug;88(16):8900-10. doi: 10.1128/JVI.01040-14. Epub 2014 May 28.
5
Morphology, genome sequence, and structural proteome of type phage P335 from Lactococcus lactis.
Appl Environ Microbiol. 2008 Aug;74(15):4636-44. doi: 10.1128/AEM.00118-08. Epub 2008 Jun 6.
6
Characterization of Lactococcus lactis phage 949 and comparison with other lactococcal phages.
Appl Environ Microbiol. 2010 Oct;76(20):6843-52. doi: 10.1128/AEM.00796-10. Epub 2010 Aug 27.
7
Viral infection modulation and neutralization by camelid nanobodies.
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):E1371-9. doi: 10.1073/pnas.1301336110. Epub 2013 Mar 25.
9
Modular structure of the receptor binding proteins of Lactococcus lactis phages. The RBP structure of the temperate phage TP901-1.
J Biol Chem. 2006 May 19;281(20):14256-62. doi: 10.1074/jbc.M600666200. Epub 2006 Mar 20.
10
Structure and molecular assignment of lactococcal phage TP901-1 baseplate.
J Biol Chem. 2010 Dec 10;285(50):39079-86. doi: 10.1074/jbc.M110.175646. Epub 2010 Oct 11.

引用本文的文献

1
The In Situ Structure of T-Series T1 Reveals a Conserved Lambda-Like Tail Tip.
Viruses. 2025 Feb 28;17(3):351. doi: 10.3390/v17030351.
2
Bacteriophage Receptor Recognition and Nucleic Acid Transfer.
Subcell Biochem. 2024;105:593-628. doi: 10.1007/978-3-031-65187-8_17.
3
Structure and replication of Pseudomonas aeruginosa phage JBD30.
EMBO J. 2024 Oct;43(19):4384-4405. doi: 10.1038/s44318-024-00195-1. Epub 2024 Aug 14.
4
The gene of lactococcal bacteriophage TP901-1 is involved in DNA release following host adsorption.
Appl Environ Microbiol. 2024 Sep 18;90(9):e0069424. doi: 10.1128/aem.00694-24. Epub 2024 Aug 12.
7
Siphophage 0105phi7-2 of : Novel Propagation, DNA, and Genome-Implied Assembly.
Int J Mol Sci. 2023 May 18;24(10):8941. doi: 10.3390/ijms24108941.
8
Bacteriophages of Mycobacterium tuberculosis, their diversity, and potential therapeutic uses: a review.
BMC Infect Dis. 2022 Dec 22;22(1):957. doi: 10.1186/s12879-022-07944-9.
9
Exploring Structural Diversity among Adhesion Devices Encoded by Lactococcal P335 Phages with AlphaFold2.
Microorganisms. 2022 Nov 16;10(11):2278. doi: 10.3390/microorganisms10112278.
10
Critical roles of sepsis-reshaped fecal virota in attenuating sepsis severity.
Front Immunol. 2022 Aug 2;13:940935. doi: 10.3389/fimmu.2022.940935. eCollection 2022.

本文引用的文献

1
Structure of the phage TP901-1 1.8 MDa baseplate suggests an alternative host adhesion mechanism.
Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):8954-8. doi: 10.1073/pnas.1200966109. Epub 2012 May 18.
2
Virus maturation.
Annu Rev Biophys. 2012;41:473-96. doi: 10.1146/annurev-biophys-042910-155407. Epub 2012 Feb 23.
3
Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection.
Mol Microbiol. 2012 Jan;83(2):289-303. doi: 10.1111/j.1365-2958.2011.07931.x. Epub 2011 Dec 15.
4
A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries.
Microbiol Mol Biol Rev. 2011 Sep;75(3):423-33, first page of table of contents. doi: 10.1128/MMBR.00014-11.
5
FFAS server: novel features and applications.
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W38-44. doi: 10.1093/nar/gkr441.
6
Unraveling lactococcal phage baseplate assembly by mass spectrometry.
Mol Cell Proteomics. 2011 Sep;10(9):M111.009787. doi: 10.1074/mcp.M111.009787. Epub 2011 Jun 6.
7
The opening of the SPP1 bacteriophage tail, a prevalent mechanism in Gram-positive-infecting siphophages.
J Biol Chem. 2011 Jul 15;286(28):25397-405. doi: 10.1074/jbc.M111.243360. Epub 2011 May 26.
8
Three-dimensional structure of a viral genome-delivery portal vertex.
Nat Struct Mol Biol. 2011 May;18(5):597-603. doi: 10.1038/nsmb.2023. Epub 2011 Apr 17.
9
Peering down the barrel of a bacteriophage portal: the genome packaging and release valve in p22.
Structure. 2011 Apr 13;19(4):496-502. doi: 10.1016/j.str.2011.02.010.
10
Structure and molecular assignment of lactococcal phage TP901-1 baseplate.
J Biol Chem. 2010 Dec 10;285(50):39079-86. doi: 10.1074/jbc.M110.175646. Epub 2010 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验