Neuroscience Graduate Program, Departments of Ophthalmology and Physiology, University of California, San Francisco, San Francisco, California 94143, USA.
J Neurosci. 2012 Nov 7;32(45):15859-76. doi: 10.1523/JNEUROSCI.0038-12.2012.
Although clinical and experimental observations indicate that the optic nerve head (ONH) is a major site of axon degeneration in glaucoma, the mechanisms by which local retinal ganglion cell (RGC) axons are injured and damage spreads among axons remain poorly defined. Using a laser-induced ocular hypertension (LIOH) mouse model of glaucoma, we found that within 48 h of intraocular pressure elevation, RGC axon segments within the ONH exhibited ectopic accumulation and colocalization of multiple components of the glutamatergic presynaptic machinery including the vesicular glutamate transporter VGLUT2, several synaptic vesicle marker proteins, glutamate, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex and active zone cytomatrix components, as well as ultrastructurally identified, synaptophysin-containing vesicles. Ectopic vesicle exocytosis and glutamate release were detected in acute preparations of the LIOH ONH. Immunolocalization and analysis using the ionotropic receptor channel-permeant cation agmatine indicated that ONH axon segments and glia expressed glutamate receptors, and these receptors were more active after LIOH compared with controls. Pharmacological antagonism of glutamate receptors and neuronal activity resulted in increased RGC axon sparing in vivo. Furthermore, in vivo RGC-specific genetic disruption of the vesicular glutamate transporter VGLUT2 or the obligatory NMDA receptor subunit NR1 promoted axon survival in experimental glaucoma. As the inhibition of ectopic glutamate vesicular release or glutamate receptivity can independently modify the severity of RGC axon loss, synaptic release mechanisms may provide useful therapeutic entry points into glaucomatous axon degeneration.
虽然临床和实验观察表明,视神经头部(ONH)是青光眼轴突变性的主要部位,但局部视网膜神经节细胞(RGC)轴突受损的机制以及轴突之间的损伤如何扩散仍不清楚。使用激光诱导的眼内高压(LIOH)青光眼小鼠模型,我们发现眼压升高后 48 小时内,ONH 内的 RGC 轴突段表现出谷氨酸能突触前机制的多个成分的异位积累和共定位,包括囊泡谷氨酸转运体 VGLUT2、几种突触小泡标记蛋白、谷氨酸、可溶性 N-乙基马来酰亚胺敏感因子附着蛋白受体复合物和活性区细胞外基质成分,以及超微结构鉴定的含有突触小体蛋白的囊泡。在 LIOH ONH 的急性制剂中检测到异位囊泡胞吐和谷氨酸释放。免疫定位和使用离子型受体通道可渗透阳离子胍丁胺的分析表明,ONH 轴突段和神经胶质表达谷氨酸受体,与对照组相比,LIOH 后这些受体更活跃。谷氨酸受体和神经元活性的药理学拮抗作用导致体内 RGC 轴突保留增加。此外,体内特异性破坏 VGLUT2 或必需的 NMDA 受体亚基 NR1 的 RGC 可促进实验性青光眼的轴突存活。由于异位谷氨酸囊泡释放或谷氨酸感受性的抑制可以独立地改变 RGC 轴突丢失的严重程度,因此突触释放机制可能为治疗青光眼轴突变性提供有用的治疗切入点。