Suppr超能文献

从细胞到染色质:利用 5C 技术捕获基因组结构的快照。

From cells to chromatin: capturing snapshots of genome organization with 5C technology.

机构信息

Department of Biochemistry and Goodman Cancer Research Center, McGill University, 3655 Promenade Sir-William-Osler, Room 815A, Montréal, Québec, Canada H3G1Y6.

出版信息

Methods. 2012 Nov;58(3):255-67. doi: 10.1016/j.ymeth.2012.10.011. Epub 2012 Nov 5.

Abstract

In eukaryotes, genome organization can be observed on many levels and at different scales. This organization is important not only to reduce chromosome length but also for the proper execution of various biological processes. High-resolution mapping of spatial chromatin structure was made possible by the development of the chromosome conformation capture (3C) technique. 3C uses chemical cross-linking followed by proximity-based ligation of fragmented DNA to capture frequently interacting chromatin segments in cell populations. Several 3C-related methods capable of higher chromosome conformation mapping throughput were reported afterwards. These techniques include the 3C-carbon copy (5C) approach, which offers the advantage of being highly quantitative and reproducible. We provide here an updated reference protocol for the production of 5C libraries analyzed by next-generation sequencing or onto microarrays. A procedure used to verify that 3C library templates bear the high quality required to produce superior 5C libraries is also described. We believe that this detailed protocol will help guide researchers in probing spatial genome organization and its role in various biological processes.

摘要

在真核生物中,基因组组织可以在多个层面和不同尺度上观察到。这种组织不仅对于减少染色体长度很重要,对于各种生物过程的正确执行也很重要。染色体构象捕获(3C)技术的发展使得对空间染色质结构的高分辨率作图成为可能。3C 使用化学交联,然后对片段化的 DNA 进行基于邻近的连接,以捕获细胞群体中经常相互作用的染色质片段。随后报道了几种能够实现更高染色体构象作图通量的 3C 相关方法。这些技术包括 3C 碳拷贝(5C)方法,该方法具有高度定量和可重复性的优势。我们在此提供了一个经过更新的参考协议,用于通过下一代测序或微阵列分析产生 5C 文库。还描述了一种用于验证 3C 文库模板具有产生优质 5C 文库所需的高质量的程序。我们相信,这个详细的协议将有助于指导研究人员探索空间基因组组织及其在各种生物过程中的作用。

相似文献

1
From cells to chromatin: capturing snapshots of genome organization with 5C technology.
Methods. 2012 Nov;58(3):255-67. doi: 10.1016/j.ymeth.2012.10.011. Epub 2012 Nov 5.
2
A Torrent of data: mapping chromatin organization using 5C and high-throughput sequencing.
Methods Enzymol. 2012;513:113-41. doi: 10.1016/B978-0-12-391938-0.00005-7.
3
Determining spatial chromatin organization of large genomic regions using 5C technology.
Methods Mol Biol. 2009;567:189-213. doi: 10.1007/978-1-60327-414-2_13.
5
Analysis of long-range chromatin interactions using Chromosome Conformation Capture.
Methods. 2012 Nov;58(3):192-203. doi: 10.1016/j.ymeth.2012.07.022. Epub 2012 Aug 15.
6
Hi-C: a comprehensive technique to capture the conformation of genomes.
Methods. 2012 Nov;58(3):268-76. doi: 10.1016/j.ymeth.2012.05.001. Epub 2012 May 29.
7
Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.
Methods. 2018 Jun 1;142:59-73. doi: 10.1016/j.ymeth.2018.01.014. Epub 2018 Jan 31.
8
Mapping networks of physical interactions between genomic elements using 5C technology.
Nat Protoc. 2007;2(4):988-1002. doi: 10.1038/nprot.2007.116.
10
4C technology: protocols and data analysis.
Methods Enzymol. 2012;513:89-112. doi: 10.1016/B978-0-12-391938-0.00004-5.

引用本文的文献

1
Hidden secrets of the cancer genome: unlocking the impact of non-coding mutations in gene regulatory elements.
Cell Mol Life Sci. 2024 Jun 20;81(1):274. doi: 10.1007/s00018-024-05314-z.
2
Comparative study on chromatin loop callers using Hi-C data reveals their effectiveness.
BMC Bioinformatics. 2024 Mar 21;25(1):123. doi: 10.1186/s12859-024-05713-w.
4
Inferring Single-Cell 3D Chromosomal Structures Based on the Lennard-Jones Potential.
Int J Mol Sci. 2021 May 31;22(11):5914. doi: 10.3390/ijms22115914.
5
Liquid chromatin Hi-C characterizes compartment-dependent chromatin interaction dynamics.
Nat Genet. 2021 Mar;53(3):367-378. doi: 10.1038/s41588-021-00784-4. Epub 2021 Feb 11.
6
Three-dimensional chromatin in infectious disease-A role for gene regulation and pathogenicity?
PLoS Pathog. 2021 Feb 4;17(2):e1009207. doi: 10.1371/journal.ppat.1009207. eCollection 2021 Feb.
7
From Genes to Transcripts, a Tightly Regulated Journey in .
Front Cell Infect Microbiol. 2020 Dec 17;10:618454. doi: 10.3389/fcimb.2020.618454. eCollection 2020.
8
Dynamic Chromatin Structure and Epigenetics Control the Fate of Malaria Parasites.
Trends Genet. 2021 Jan;37(1):73-85. doi: 10.1016/j.tig.2020.09.003. Epub 2020 Sep 25.
9
10
Computational approaches for inferring 3D conformations of chromatin from chromosome conformation capture data.
Methods. 2020 Oct 1;181-182:24-34. doi: 10.1016/j.ymeth.2019.08.008. Epub 2019 Aug 27.

本文引用的文献

1
Analysis of long-range chromatin interactions using Chromosome Conformation Capture.
Methods. 2012 Nov;58(3):192-203. doi: 10.1016/j.ymeth.2012.07.022. Epub 2012 Aug 15.
2
An encyclopedia of mouse DNA elements (Mouse ENCODE).
Genome Biol. 2012 Aug 13;13(8):418. doi: 10.1186/gb-2012-13-8-418.
3
ENCODE whole-genome data in the UCSC Genome Browser: update 2012.
Nucleic Acids Res. 2012 Jan;40(Database issue):D912-7. doi: 10.1093/nar/gkr1012. Epub 2011 Nov 9.
4
Shaping the Genome with Non-Coding RNAs.
Curr Genomics. 2011 Aug;12(5):307-21. doi: 10.2174/138920211796429772.
5
The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules.
Nat Struct Mol Biol. 2011 Jan;18(1):107-14. doi: 10.1038/nsmb.1936. Epub 2010 Dec 5.
6
Living without 30nm chromatin fibers.
Trends Biochem Sci. 2011 Jan;36(1):1-6. doi: 10.1016/j.tibs.2010.09.002.
7
Computing chromosome conformation.
Methods Mol Biol. 2010;674:251-68. doi: 10.1007/978-1-60761-854-6_16.
8
Mediator and cohesin connect gene expression and chromatin architecture.
Nature. 2010 Sep 23;467(7314):430-5. doi: 10.1038/nature09380. Epub 2010 Aug 18.
9
Chromatin conformation signatures: ideal human disease biomarkers?
Biomark Med. 2010 Aug;4(4):611-29. doi: 10.2217/bmm.10.68.
10
The three-dimensional architecture of Hox cluster silencing.
Nucleic Acids Res. 2010 Nov;38(21):7472-84. doi: 10.1093/nar/gkq644. Epub 2010 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验