Suppr超能文献

α-珠蛋白基因结构域的三维折叠揭示染色质小球的形成。

The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules.

机构信息

Structural Genomics Unit, Bioinformatics and Genomics Department, Centro de Investigación Príncipe Felipe, Valencia, Spain.

出版信息

Nat Struct Mol Biol. 2011 Jan;18(1):107-14. doi: 10.1038/nsmb.1936. Epub 2010 Dec 5.

Abstract

We developed a general approach that combines chromosome conformation capture carbon copy (5C) with the Integrated Modeling Platform (IMP) to generate high-resolution three-dimensional models of chromatin at the megabase scale. We applied this approach to the ENm008 domain on human chromosome 16, containing the α-globin locus, which is expressed in K562 cells and silenced in lymphoblastoid cells (GM12878). The models accurately reproduce the known looping interactions between the α-globin genes and their distal regulatory elements. Further, we find using our approach that the domain folds into a single globular conformation in GM12878 cells, whereas two globules are formed in K562 cells. The central cores of these globules are enriched for transcribed genes, whereas nontranscribed chromatin is more peripheral. We propose that globule formation represents a higher-order folding state related to clustering of transcribed genes around shared transcription machineries, as previously observed by microscopy.

摘要

我们开发了一种通用方法,将染色体构象捕获碳拷贝(5C)与集成建模平台(IMP)相结合,生成兆碱基尺度上染色质的高分辨率三维模型。我们将此方法应用于人类 16 号染色体上的 ENm008 结构域,该结构域包含α-珠蛋白基因座,在 K562 细胞中表达,而在淋巴母细胞(GM12878)中沉默。这些模型准确地再现了已知的α-珠蛋白基因与其远端调控元件之间的环化相互作用。此外,我们通过使用我们的方法发现,该结构域在 GM12878 细胞中折叠成单个球形构象,而在 K562 细胞中形成两个球形。这些球形的核心区域富含转录基因,而非转录染色质则更靠近外周。我们提出,球形形成代表了一种与转录基因在共享转录机制周围聚集相关的更高阶折叠状态,如先前通过显微镜观察到的那样。

相似文献

1
The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules.
Nat Struct Mol Biol. 2011 Jan;18(1):107-14. doi: 10.1038/nsmb.1936. Epub 2010 Dec 5.
3
High-resolution analysis of cis-acting regulatory networks at the α-globin locus.
Philos Trans R Soc Lond B Biol Sci. 2013 May 6;368(1620):20120361. doi: 10.1098/rstb.2012.0361. Print 2013.
4
Genome structure determination via 3C-based data integration by the Integrative Modeling Platform.
Methods. 2012 Nov;58(3):300-6. doi: 10.1016/j.ymeth.2012.04.004. Epub 2012 Apr 13.
6
CTCF-mediated transcriptional regulation through cell type-specific chromosome organization in the β-globin locus.
Nucleic Acids Res. 2012 Sep;40(16):7718-27. doi: 10.1093/nar/gks536. Epub 2012 Jun 16.
7
Structure determination of genomic domains by satisfaction of spatial restraints.
Chromosome Res. 2011 Jan;19(1):25-35. doi: 10.1007/s10577-010-9167-2.
10
The long-range interaction landscape of gene promoters.
Nature. 2012 Sep 6;489(7414):109-13. doi: 10.1038/nature11279.

引用本文的文献

1
Advancements and future directions in single-cell Hi-C based 3D chromatin modeling.
Comput Struct Biotechnol J. 2024 Oct 3;23:3549-3558. doi: 10.1016/j.csbj.2024.09.026. eCollection 2024 Dec.
3
Multiscale Bayesian simulations reveal functional chromatin condensation of gene loci.
PNAS Nexus. 2024 Jun 6;3(6):pgae226. doi: 10.1093/pnasnexus/pgae226. eCollection 2024 Jun.
4
Boundary stacking interactions enable cross-TAD enhancer-promoter communication during limb development.
Nat Genet. 2024 Feb;56(2):306-314. doi: 10.1038/s41588-023-01641-2. Epub 2024 Jan 18.
6
Computational methods for analysing multiscale 3D genome organization.
Nat Rev Genet. 2024 Feb;25(2):123-141. doi: 10.1038/s41576-023-00638-1. Epub 2023 Sep 6.
7
Evaluating the role of the nuclear microenvironment in gene function by population-based modeling.
Nat Struct Mol Biol. 2023 Aug;30(8):1193-1206. doi: 10.1038/s41594-023-01036-1. Epub 2023 Aug 14.
8
Multiomic analysis of cohesin reveals that ZBTB transcription factors contribute to chromatin interactions.
Nucleic Acids Res. 2023 Jul 21;51(13):6784-6805. doi: 10.1093/nar/gkad401.
9
Integrative genome modeling platform reveals essentiality of rare contact events in 3D genome organizations.
Nat Methods. 2022 Aug;19(8):938-949. doi: 10.1038/s41592-022-01527-x. Epub 2022 Jul 11.
10
Epigenetic-structural changes in X chromosomes promote Xic pairing during early differentiation of mouse embryonic stem cells.
Biophys Physicobiol. 2022 May 10;19:1-14. doi: 10.2142/biophysico.bppb-v19.0018. eCollection 2022.

本文引用的文献

1
Looping probabilities in model interphase chromosomes.
Biophys J. 2010 Jun 2;98(11):2410-9. doi: 10.1016/j.bpj.2010.01.054.
2
A three-dimensional model of the yeast genome.
Nature. 2010 May 20;465(7296):363-7. doi: 10.1038/nature08973. Epub 2010 May 2.
3
Adventitious changes in long-range gene expression caused by polymorphic structural variation and promoter competition.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21771-6. doi: 10.1073/pnas.0909331106. Epub 2009 Dec 3.
4
Comprehensive mapping of long-range interactions reveals folding principles of the human genome.
Science. 2009 Oct 9;326(5950):289-93. doi: 10.1126/science.1181369.
5
My5C: web tools for chromosome conformation capture studies.
Nat Methods. 2009 Oct;6(10):690-1. doi: 10.1038/nmeth1009-690.
6
CTCF: master weaver of the genome.
Cell. 2009 Jun 26;137(7):1194-211. doi: 10.1016/j.cell.2009.06.001.
7
Transcription factories: gene expression in unions?
Nat Rev Genet. 2009 Jul;10(7):457-66. doi: 10.1038/nrg2592.
8
Chromatin conformation signatures of cellular differentiation.
Genome Biol. 2009;10(4):R37. doi: 10.1186/gb-2009-10-4-r37. Epub 2009 Apr 19.
9
Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template.
J Cell Biol. 2009 Apr 6;185(1):87-100. doi: 10.1083/jcb.200809196.
10
Spatially confined folding of chromatin in the interphase nucleus.
Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3812-7. doi: 10.1073/pnas.0809501106. Epub 2009 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验