Nanoscience Centre, University of Cambridge, Cambridge, UK.
Nanotechnology. 2012 Dec 7;23(48):485708. doi: 10.1088/0957-4484/23/48/485708. Epub 2012 Nov 9.
The measurement of cantilever parameters is an essential part of performing a calibrated measurement with an atomic force microscope (AFM). The thermal motion method is a widely used technique for calibrating the spring constant of an AFM cantilever, which can be applied to non-rectangular cantilevers. Given the trend towards high frequency scanning, calibration of non-rectangular cantilevers is of increasing importance. This paper presents two results relevant to cantilever calibration via the thermal motion method. We demonstrate the possibility of using the AFM's phase signal to acquire the thermal motion. This avoids the challenges associated with connecting the raw photodiode signal to a separate spectrum analyser. We also describe how numerical calculations may be used to calculate the parameters needed in a thermal motion calibration of a non-rectangular cantilever. Only accurate knowledge of the relative size of the in-plane dimensions of the cantilever is needed in this computation. We use this pair of results in the calibration of a variety of rectangular and non-rectangular cantilevers. We observe an average difference between the Sader and thermal motion values of cantilever stiffness of 10%.
悬臂参数的测量是使用原子力显微镜(AFM)进行校准测量的重要组成部分。热运动方法是校准 AFM 悬臂的弹簧常数的一种广泛使用的技术,它可以应用于非矩形悬臂。鉴于高频扫描的趋势,非矩形悬臂的校准变得越来越重要。本文提出了通过热运动方法进行悬臂校准的两个相关结果。我们展示了使用 AFM 的相位信号获取热运动的可能性。这避免了将原始光电二极管信号连接到单独的频谱分析仪的相关挑战。我们还描述了如何使用数值计算来计算非矩形悬臂热运动校准所需的参数。在这种计算中,只需要准确了解悬臂的面内尺寸的相对大小。我们使用这两个结果对各种矩形和非矩形悬臂进行了校准。我们观察到悬臂刚度的 Sader 和热运动值之间的平均差异为 10%。