Suppr超能文献

响应性文化平台可用于研究 3D 微环境几何形状对细胞功能的影响。

Responsive culture platform to examine the influence of microenvironmental geometry on cell function in 3D.

机构信息

Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.

出版信息

Integr Biol (Camb). 2012 Dec;4(12):1540-9. doi: 10.1039/c2ib20212c.

Abstract

We describe the development of a well-based cell culture platform that enables experimenters to control the geometry and connectivity of cellular microenvironments spatiotemporally. The base material is a hydrogel comprised of photolabile and enzyme-labile crosslinks and pendant cell adhesion sequences, enabling spatially-specific, in situ patterning with light and cell-dictated microenvironment remodeling through enzyme secretion. Arrays of culture wells of varying shape and size were patterned into the hydrogel surface using photolithography, where well depth was correlated with irradiation dose. The geometry of these devices can be subsequently modified through sequential patterning, while simultaneously monitoring changes in cell geometry and connectivity. Towards establishing the utility of these devices for dynamic evaluation of the influence of physical cues on tissue morphogenesis, the effect of well shape on lung epithelial cell differentiation (i.e., primary mouse alveolar type II cells, ATII cells) was assessed. Shapes inspired by alveoli were degraded into hydrogel surfaces. ATII cells were seeded within the well-based arrays and encapsulated by the addition of a top hydrogel layer. Cell differentiation in response to these geometries was characterized over 7 days of culture with immunocytochemistry (surfactant protein C, ATII; T1α protein, alveolar type I (ATI) differentiated epithelial cells) and confocal image analysis. Individual cell clusters were further connected by eroding channels between wells during culture via controlled two-photon irradiation. Collectively, these studies demonstrate the development and utility of responsive hydrogel culture devices to study how a range of microenvironment geometries of evolving shape and connectivity might influence or direct cell function.

摘要

我们描述了一种基于孔的细胞培养平台的开发,该平台使实验者能够时空控制细胞微环境的几何形状和连通性。基底材料是一种由光解和酶解交联以及悬垂细胞黏附序列组成的水凝胶,能够通过光和细胞分泌的酶来实现空间特异性的原位图案化和微环境重塑。使用光刻技术将具有不同形状和大小的培养孔阵列图案化到水凝胶表面上,其中孔深度与辐照剂量相关。通过顺序图案化可以修改这些器件的几何形状,同时监测细胞几何形状和连通性的变化。为了建立这些设备用于动态评估物理线索对组织形态发生的影响的实用性,评估了孔形状对肺上皮细胞分化(即原代小鼠肺泡 II 型细胞,ATII 细胞)的影响。受肺泡启发的形状被降解到水凝胶表面。将 ATII 细胞接种到基于孔的阵列中,并通过添加顶层水凝胶层进行包封。通过免疫细胞化学(表面活性蛋白 C,ATII;T1α 蛋白,肺泡 I 型(ATI)分化上皮细胞)和共聚焦图像分析,在 7 天的培养过程中对细胞分化进行了特征描述。在培养过程中,通过受控双光子照射在孔之间侵蚀通道,进一步将单个细胞簇连接起来。总之,这些研究证明了响应性水凝胶培养器件的开发和实用性,用于研究不断变化的形状和连通性的一系列微环境几何形状如何影响或指导细胞功能。

相似文献

2
In vitro model alveoli from photodegradable microsphere templates.
Biomater Sci. 2015 Jun;3(6):821-32. doi: 10.1039/c5bm00034c. Epub 2015 Mar 27.
3
Spectral monitoring of surfactant clearance during alveolar epithelial type II cell differentiation.
Biophys J. 2008 Dec 15;95(12):5978-87. doi: 10.1529/biophysj.108.136168. Epub 2008 Sep 26.
4
Alveolar epithelial differentiation of human induced pluripotent stem cells in a rotating bioreactor.
Biomaterials. 2014 Jan;35(2):699-710. doi: 10.1016/j.biomaterials.2013.10.018. Epub 2013 Oct 19.
5
6
Primary human coculture model of alveolo-capillary unit to study mechanisms of injury to peripheral lung.
Cell Tissue Res. 2009 Apr;336(1):91-105. doi: 10.1007/s00441-008-0750-1. Epub 2009 Feb 24.
7
Knockdown of Drosha in human alveolar type II cells alters expression of SP-A in culture: a pilot study.
Exp Lung Res. 2014 Sep;40(7):354-66. doi: 10.3109/01902148.2014.929757. Epub 2014 Jul 24.
8
The influence of matrix properties on growth and morphogenesis of human pancreatic ductal epithelial cells in 3D.
Biomaterials. 2013 Jul;34(21):5117-27. doi: 10.1016/j.biomaterials.2013.03.086. Epub 2013 Apr 19.
9
Paracrine stimulation of surfactant secretion by extracellular ATP in response to mechanical deformation.
Am J Physiol Lung Cell Mol Physiol. 2005 Sep;289(3):L489-96. doi: 10.1152/ajplung.00074.2005. Epub 2005 May 20.
10
Type I alveolar epithelial phenotype in primary culture.
Am J Respir Cell Mol Biol. 2011 May;44(5):692-9. doi: 10.1165/rcmb.2009-0359OC. Epub 2010 Jul 8.

引用本文的文献

1
Cryopreservation of human lung tissue for 3D ex vivo analysis.
Respir Res. 2025 May 15;26(1):187. doi: 10.1186/s12931-025-03265-y.
2
Click Chemistry for Biofunctional Polymers: From Observing to Steering Cell Behavior.
Chem Rev. 2024 Dec 11;124(23):13216-13300. doi: 10.1021/acs.chemrev.4c00251. Epub 2024 Dec 2.
3
Electroactive 4D Porous Scaffold Based on Conducting Polymer as a Responsive and Dynamic Cell Culture Platform.
ACS Appl Mater Interfaces. 2024 Feb 7;16(5):5613-5626. doi: 10.1021/acsami.3c16686. Epub 2024 Jan 26.
4
Engineering Dynamic 3D Models of Lung.
Adv Exp Med Biol. 2023;1413:155-189. doi: 10.1007/978-3-031-26625-6_9.
5
Instructional materials that control cellular activity through synthetic Notch receptors.
Biomaterials. 2023 Jun;297:122099. doi: 10.1016/j.biomaterials.2023.122099. Epub 2023 Mar 29.
6
Light-Regulated Angiogenesis via a Phototriggerable VEGF Peptidomimetic.
Adv Healthc Mater. 2021 Jul;10(14):e2100488. doi: 10.1002/adhm.202100488. Epub 2021 Jun 10.
7
Engineered materials for organoid systems.
Nat Rev Mater. 2019 Sep;4(9):606-622. doi: 10.1038/s41578-019-0129-9. Epub 2019 Aug 16.
8
Current strategies and opportunities to manufacture cells for modeling human lungs.
Adv Drug Deliv Rev. 2020;161-162:90-109. doi: 10.1016/j.addr.2020.08.005. Epub 2020 Aug 22.
9
Multiscale engineering of immune cells and lymphoid organs.
Nat Rev Mater. 2019 Jun;4(6):355-378. doi: 10.1038/s41578-019-0100-9. Epub 2019 Apr 3.

本文引用的文献

1
A Versatile Synthetic Extracellular Matrix Mimic via Thiol-Norbornene Photopolymerization.
Adv Mater. 2009 Dec 28;21(48):5005-5010. doi: 10.1002/adma.200901808. Epub 2009 Oct 7.
2
Engineering microscale topographies to control the cell-substrate interface.
Biomaterials. 2012 Jul;33(21):5230-46. doi: 10.1016/j.biomaterials.2012.03.079. Epub 2012 Apr 21.
3
A microwell cell culture platform for the aggregation of pancreatic β-cells.
Tissue Eng Part C Methods. 2012 Aug;18(8):583-92. doi: 10.1089/ten.TEC.2011.0504. Epub 2012 Mar 19.
4
Photoreversible patterning of biomolecules within click-based hydrogels.
Angew Chem Int Ed Engl. 2012 Feb 20;51(8):1816-9. doi: 10.1002/anie.201106463. Epub 2011 Dec 8.
7
(Micro)managing the mechanical microenvironment.
Integr Biol (Camb). 2011 Oct;3(10):959-71. doi: 10.1039/c1ib00056j. Epub 2011 Sep 19.
8
Spatial and temporal control of the alkyne-azide cycloaddition by photoinitiated Cu(II) reduction.
Nat Chem. 2011 Mar;3(3):256-59. doi: 10.1038/nchem.980. Epub 2011 Jan 30.
9
The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels.
Biomaterials. 2011 May;32(14):3564-74. doi: 10.1016/j.biomaterials.2011.01.064. Epub 2011 Feb 21.
10
Elucidating the role of matrix stiffness in 3D cell migration and remodeling.
Biophys J. 2011 Jan 19;100(2):284-93. doi: 10.1016/j.bpj.2010.11.082.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验