Suppr超能文献

群组配准在神经退行性疾病基于束路的空间统计学研究中的重要性:阿尔茨海默病的模拟研究。

The importance of group-wise registration in tract based spatial statistics study of neurodegeneration: a simulation study in Alzheimer's disease.

机构信息

Dementia Research Centre, University College London Institute of Neurology, London, United Kingdom.

出版信息

PLoS One. 2012;7(11):e45996. doi: 10.1371/journal.pone.0045996. Epub 2012 Nov 6.

Abstract

Tract-based spatial statistics (TBSS) is a popular method for the analysis of diffusion tensor imaging data. TBSS focuses on differences in white matter voxels with high fractional anisotropy (FA), representing the major fibre tracts, through registering all subjects to a common reference and the creation of a FA skeleton. This work considers the effect of choice of reference in the TBSS pipeline, which can be a standard template, an individual subject from the study, a study-specific template or a group-wise average. While TBSS attempts to overcome registration error by searching the neighbourhood perpendicular to the FA skeleton for the voxel with maximum FA, this projection step may not compensate for large registration errors that might occur in the presence of pathology such as atrophy in neurodegenerative diseases. This makes registration performance and choice of reference an important issue. Substantial work in the field of computational anatomy has shown the use of group-wise averages to reduce biases while avoiding the arbitrary selection of a single individual. Here, we demonstrate the impact of the choice of reference on: (a) specificity (b) sensitivity in a simulation study and (c) a real-world comparison of Alzheimer's disease patients to controls. In (a) and (b), simulated deformations and decreases in FA were applied to control subjects to simulate changes of shape and WM integrity similar to what would be seen in AD patients, in order to provide a "ground truth" for evaluating the various methods of TBSS reference. Using a group-wise average atlas as the reference outperformed other references in the TBSS pipeline in all evaluations.

摘要

基于束的空间统计学(TBSS)是一种分析弥散张量成像数据的常用方法。TBSS 专注于具有高分数各向异性(FA)的白质体素的差异,通过将所有受试者注册到共同参考并创建 FA 骨架来实现。这项工作考虑了 TBSS 管道中参考选择的影响,参考可以是标准模板、研究中的个体受试者、特定研究的模板或群体平均。虽然 TBSS 通过在 FA 骨架的垂直方向上搜索具有最大 FA 的体素来尝试克服配准误差,但该投影步骤可能无法补偿可能由于病理学(如神经退行性疾病中的萎缩)而发生的大配准误差。这使得配准性能和参考选择成为一个重要问题。计算解剖学领域的大量工作表明,使用群体平均值可以减少偏差,同时避免对单个个体的任意选择。在这里,我们展示了参考选择对:(a)特异性和(b)在模拟研究中的敏感性的影响,以及(c)在阿尔茨海默病患者与对照组的真实世界比较。在(a)和(b)中,模拟变形和 FA 降低被应用于对照受试者,以模拟类似于 AD 患者所见的形状和 WM 完整性的变化,以便为评估 TBSS 参考的各种方法提供“真实情况”。使用群体平均图谱作为参考,在所有评估中均优于 TBSS 管道中的其他参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3819/3491011/996ca0825371/pone.0045996.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验