Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM U696, Palaiseau, France.
PLoS One. 2012;7(11):e48388. doi: 10.1371/journal.pone.0048388. Epub 2012 Nov 5.
Second Harmonic Generation (SHG) microscopy recently appeared as an efficient optical imaging technique to probe unstained collagen-rich tissues like cornea. Moreover, corneal remodeling occurs in many diseases and precise characterization requires overcoming the limitations of conventional techniques. In this work, we focus on diabetes, which affects hundreds of million people worldwide and most often leads to diabetic retinopathy, with no early diagnostic tool. This study then aims to establish the potential of SHG microscopy for in situ detection and characterization of hyperglycemia-induced abnormalities in the Descemet's membrane, in the posterior cornea.
METHODOLOGY/PRINCIPAL FINDINGS: We studied corneas from age-matched control and Goto-Kakizaki rats, a spontaneous model of type 2 diabetes, and corneas from human donors with type 2 diabetes and without any diabetes. SHG imaging was compared to confocal microscopy, to histology characterization using conventional staining and transmitted light microscopy and to transmission electron microscopy. SHG imaging revealed collagen deposits in the Descemet's membrane of unstained corneas in a unique way compared to these gold standard techniques in ophthalmology. It provided background-free images of the three-dimensional interwoven distribution of the collagen deposits, with improved contrast compared to confocal microscopy. It also provided structural capability in intact corneas because of its high specificity to fibrillar collagen, with substantially larger field of view than transmission electron microscopy. Moreover, in vivo SHG imaging was demonstrated in Goto-Kakizaki rats.
CONCLUSIONS/SIGNIFICANCE: Our study shows unambiguously the high potential of SHG microscopy for three-dimensional characterization of structural abnormalities in unstained corneas. Furthermore, our demonstration of in vivo SHG imaging opens the way to long-term dynamical studies. This method should be easily generalized to other structural remodeling of the cornea and SHG microscopy should prove to be invaluable for in vivo corneal pathological studies.
二次谐波产生(SHG)显微镜最近成为一种有效的光学成像技术,可用于探测未经染色的富含胶原蛋白的组织,如角膜。此外,许多疾病都会导致角膜重塑,而精确的特征描述需要克服传统技术的局限性。在这项工作中,我们专注于糖尿病,这种疾病影响着全球数以亿计的人口,并且大多数情况下会导致糖尿病性视网膜病变,但目前还没有早期诊断工具。因此,本研究旨在建立 SHG 显微镜在原位检测和特征描述后角膜中的高血糖诱导的 Descemet 膜异常的潜力。
方法/主要发现:我们研究了年龄匹配的对照组和自发性 2 型糖尿病模型 Goto-Kakizaki 大鼠的角膜,以及来自 2 型糖尿病患者和无任何糖尿病患者的人供体的角膜。SHG 成像与共聚焦显微镜进行了比较,与使用传统染色和透射光显微镜的组织学特征进行了比较,与透射电子显微镜进行了比较。与这些眼科金标准技术相比,SHG 成像以独特的方式揭示了未经染色的角膜中 Descemet 膜中的胶原蛋白沉积。它提供了无背景的胶原蛋白沉积的三维交织分布的图像,与共聚焦显微镜相比具有更好的对比度。由于其对纤维状胶原蛋白的高度特异性,它还在完整的角膜中提供了结构能力,并且具有比透射电子显微镜大得多的视野。此外,在 Goto-Kakizaki 大鼠中进行了体内 SHG 成像。
结论/意义:我们的研究明确表明,SHG 显微镜在三维特征描述未经染色的角膜中的结构异常方面具有很高的潜力。此外,我们体内 SHG 成像的演示为长期动力学研究开辟了道路。这种方法应该很容易推广到其他角膜结构重塑,并且 SHG 显微镜应该被证明对体内角膜病理研究非常有价值。