Institute of Acoustics, Key Laboratory of Modern Acoustics (MOE), Nanjing University, Nanjing, China.
Ultrasound Med Biol. 2013 Jan;39(1):161-71. doi: 10.1016/j.ultrasmedbio.2012.08.025. Epub 2012 Nov 8.
One isoform of the vascular endothelial growth factor, VEGF(165), has been reported to be a dominant mediator and regulator of angiogenic process, which plays an important role in treating cardiovascular diseases and chronically ischemic wounds. Branched polyethylenimine (bPEI) has been widely used as a non-viral delivery vector for gene therapy. Although bPEI-mediated DNA transfection efficiency can be raised by increasing the PEI nitrogen:DNA phosphate (N/P) ratio, cytotoxicity increases as well. In this study, the enhancement effect of microbubble inertial cavitation (IC) on bPEI-mediated VEGF(165) transfection was investigated, in an effort to optimize transfection efficiency using low N/P ratios. HEK 293T cells, mixed with bPEI:VEGF(165) complexes, were exposed to 1-MHz ultrasound pulses. The results show that: (1) IC activity induced by microbubble destruction can be quantified as an IC "dose" (ICD) and will increase with increasing acoustic driving pressure; (2) larger sonoporation pores can be generated by increasing ICD; (3) the transfection efficiency can be enhanced by increasing ICD until reaching a saturation level; and (4) microbubble IC activity has less cytotoxicity than bPEI, although a combinatorial effect of microbubble IC activity and bPEI could be observed on cell viability. The results suggest that, with appropriate ultrasound parameters, it is possible to optimize bPEI-mediated VEGF transfection efficiency using relatively low N/P ratios by employing ultrasound-induced microbubble inertial cavitation.
一种血管内皮生长因子(VEGF)同工型,VEGF(165),被报道是血管生成过程的主要介质和调节剂,在治疗心血管疾病和慢性缺血性伤口方面发挥着重要作用。分支聚乙烯亚胺(bPEI)已被广泛用作基因治疗的非病毒传递载体。虽然通过增加 PEI 氮:DNA 磷酸盐(N/P)比可以提高 bPEI 介导的 DNA 转染效率,但细胞毒性也会增加。在这项研究中,研究了微泡惯性空化(IC)对 bPEI 介导的 VEGF(165)转染的增强作用,旨在使用低 N/P 比优化转染效率。将 HEK 293T 细胞与 bPEI:VEGF(165)复合物混合,然后用 1MHz 超声脉冲进行照射。结果表明:(1)可以将微泡破坏引起的 IC 活性量化为 IC“剂量”(ICD),并随着声驱动压力的增加而增加;(2)可以通过增加 ICD 产生更大的超声致孔;(3)可以通过增加 ICD 增强转染效率,直到达到饱和水平;(4)尽管可以观察到微泡 IC 活性和 bPEI 的组合效应对细胞活力的影响,但微泡 IC 活性的细胞毒性小于 bPEI。结果表明,在适当的超声参数下,通过利用超声诱导的微泡惯性空化,可以使用相对较低的 N/P 比优化 bPEI 介导的 VEGF 转染效率。