School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel.
J Magn Reson. 2012 Dec;225:130-41. doi: 10.1016/j.jmr.2012.09.015. Epub 2012 Oct 11.
Distance measurements between a spin-1/2 and a second spin bearing a large anisotropy are performed using a modified rotational echo double resonance (REDOR) experiment. By applying pairs of rotor-synchronized π pulses on the detected spin and a single long pulse on the coupled spin the dipolar interaction is efficiently recoupled even at the sudden passage limit where both adiabaticity and the hard pulse approximation are not valid. In this manuscript we derive the theoretical basis for analyzing the behavior of single crystallites in order to gain insight into the mechanism of dipolar recoupling, and in order to find conditions for optimizing the experiment. The use of reduced time and frequency variables show that the signal depends on the ratios of the radio frequency strength ν(1) and the anisotropy, either the CSA (ν(σ)) or the quadrupolar interaction (ν(Q)), with respect to the spinning frequency ν(R). We derive expressions for the contribution of individual crystallites to the signal arising from the different frequencies mν(d) (m=0,1…2S) associated with the dipolar interaction and show that they result in a non-random distribution of intensities. For a spin-1/2 with a large CSA (up to 1MHz and more) we show using calculations and simulations that the result is a recoupling signal that takes maximal values ΔS/S(0) of ~0.6-0.7, beyond the saturation limit of 0.5, defined by equal contribution of all transitions. For a spin-3/2 we show that at certain conditions the non-random scrambling may result in an apparent saturation-like behavior. In all cases large RF amplitudes are not necessarily required for obtaining efficient recoupling. (13)C-(11)B LA-REDOR (Low-Alpha/Low-rf-Amplitude REDOR) dipolar recoupling experiments on 4-methoxyphenylboronic acid were performed following optimization of the spinning rates suitable for low amplitude radio-frequency power levels and show that efficient recoupling can be obtained for a spin-3/2, and that distance determination is not very strongly dependent on the actual value of the quadrupolar coupling constant.
使用改进的旋转回波双共振(REDOR)实验测量自旋-1/2 和带有大各向异性的第二自旋之间的距离。通过在检测自旋上施加一对转子同步的π脉冲和在耦合自旋上施加单个长脉冲,可以有效地重新耦合偶极相互作用,即使在突然通过极限下也是如此,在该极限下,绝热性和硬脉冲近似都不适用。在本文中,我们推导了分析单晶行为的理论基础,以深入了解偶极重新耦合的机制,并找到优化实验的条件。使用简化的时间和频率变量表明,信号取决于射频强度ν(1)与各向异性(CSA(ν(σ))或四极相互作用(ν(Q)))与旋转频率ν(R)的比值。我们推导出与偶极相互作用相关的不同频率 mν(d)(m=0,1…2S)的单个晶胞对信号的贡献的表达式,并表明它们导致强度的非随机分布。对于具有大 CSA(高达 1MHz 及更高)的自旋-1/2,我们通过计算和模拟表明,结果是一种重新耦合信号,其最大值ΔS/S(0)约为 0.6-0.7,超出了由所有跃迁相等贡献定义的 0.5 的饱和极限。对于自旋-3/2,我们表明在某些条件下,非随机混乱可能导致类似饱和的行为。在所有情况下,获得有效的重新耦合并不一定需要大的射频幅度。对 4-甲氧基苯硼酸进行了(13)C-(11)B LA-REDOR(低α/低 rf-幅度 REDOR)偶极重新耦合实验,优化了适合低幅度射频功率水平的旋转速度,并表明可以有效地对自旋-3/2 进行重新耦合,并且距离确定对四极耦合常数的实际值的依赖性不大。