Suppr超能文献

三甲基磷酸酯和三乙磷酸酯在干燥和水预覆盖的赤铁矿、磁铁矿和针铁矿纳米粒子上的吸附。

Adsorption of trimethyl phosphate and triethyl phosphate on dry and water pre-covered hematite, maghemite, and goethite nanoparticles.

机构信息

FOI, CBRN Defence and Security, SE-901 82 Umeå, Sweden; Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.

Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.

出版信息

J Colloid Interface Sci. 2013 Feb 15;392:349-358. doi: 10.1016/j.jcis.2012.10.012. Epub 2012 Oct 22.

Abstract

Adsorption of trimethyl phosphate (TMP) and triethyl phosphate (TEP) on well-characterized nanoparticles of hematite (α-Fe(2)O(3)), maghemite (γ-Fe(2)O(3)), and goethite (α-FeOOH) has been studied by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), 2D correlation DRIFTS analysis, and X-ray photoelectron spectroscopy (XPS) on dry and water pre-covered surfaces. It is shown that, at room temperature and low coverage, both TMP and TEP coordinate to Lewis acid Fe sites through the O phosphoryl atom on hematite and maghemite, while hydrogen bonding to Brønstedt acid surface OH groups dominates on goethite. At room temperature, slow dissociation of TMP occurs on the iron (hydr)oxide nanoparticles, whereby a methoxy group is displaced to form surface methoxy, leaving adsorbed dimethyl phosphate (DMP). Methoxy is further decomposed to formate, suggesting an oxidative degradation pathway in synthetic air on the oxide particles. Relatively, larger amounts of DMP and surface methoxy form on maghemite, while more formate is produced on hematite. Upon TMP adsorption on dry goethite nanoparticles, no oxidation surface products were detected. Instead, a slow TMP hydrolysis pathway is observed, yielding orthophosphate. It is found that pre-adsorbed water stimulates the hydrolysis of TMP. In contrast to TMP, TEP adsorbs molecularly on all iron hydr(oxide) nanoparticles. This is attributed to the longer aliphatic chain, which stabilizes the loss of charge on the methoxy CO bonds by charge redistribution upon phosphoryl O coordination to Fe surface atoms. The presented results implicate different reactivity depending on specific molecular structure of the organophosphorus compound (larger functional groups can compensate loss of charge due to surface coordination) and iron (hydr)oxide surface structure (exposing Lewis acid or Brønstedt acid sites).

摘要

三甲基磷酸酯 (TMP) 和三乙基磷酸酯 (TEP) 在经过充分表征的赤铁矿 (α-Fe(2)O(3))、磁铁矿 (γ-Fe(2)O(3)) 和针铁矿 (α-FeOOH) 纳米粒子上的吸附已通过原位漫反射红外傅里叶变换光谱 (DRIFTS)、二维相关 DRIFTS 分析和 X 射线光电子能谱 (XPS) 在干燥和水预覆盖表面上进行了研究。结果表明,在室温低覆盖度下,TMP 和 TEP 均通过赤铁矿和磁铁矿中的 O 磷酸酯原子与 Lewis 酸 Fe 位配位,而在针铁矿上则主要通过氢键与 Brønsted 酸表面 OH 基团配位。在室温下,TMP 在铁 (氢)氧化物纳米粒子上缓慢解离,其中一个甲氧基取代形成表面甲氧基,留下吸附的二甲基磷酸酯 (DMP)。甲氧基进一步分解形成甲酸盐,表明在氧化物颗粒上的合成空气中存在氧化降解途径。相对而言,DMP 和表面甲氧基在磁铁矿上形成的量较大,而在赤铁矿上形成的甲酸盐较多。在干燥的针铁矿纳米粒子上吸附 TMP 时,未检测到氧化表面产物。相反,观察到 TMP 的缓慢水解途径,生成正磷酸盐。研究发现,预吸附水会刺激 TMP 的水解。与 TMP 不同,TEP 在所有铁氢氧化物纳米粒子上均以分子形式吸附。这归因于较长的脂肪族链,当磷酸基 O 配位到 Fe 表面原子时,通过电荷重新分布稳定了甲氧基 CO 键上的电荷损失。所提出的结果表明,由于有机磷化合物的特定分子结构(较大的官能团可以补偿由于表面配位而导致的电荷损失)和铁 (氢)氧化物表面结构(暴露 Lewis 酸或 Brønsted 酸位)的不同,反应性也不同。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验