Suppr超能文献

阳光和黑暗中,通过铁(氢)氧化物介导的类芬顿过程去除和灭活病毒。

Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark.

机构信息

Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

出版信息

Photochem Photobiol Sci. 2013 Sep;12(9):1596-605. doi: 10.1039/c3pp25314g.

Abstract

Advanced oxidation processes (AOPs) have emerged as a promising alternative to conventional disinfection methods to control microbial water quality, yet little is known about the fate of viruses in AOPs. In this study, we investigated the fate of MS2 coliphage in AOPs that rely on heterogeneous Fenton-like processes catalyzed by iron (hydr)oxide particles. Both physical removal of viruses from solution via adsorption onto particles as well as true inactivation were considered. Virus fate was studied in batch reactors at circumneutral pH, containing 200 mg L(-1) of four different commercial iron (hydr)oxide particles of similar mesh sizes: hematite (α-Fe2O3), goethite (α-FeOOH), magnetite (Fe3O4) and amorphous iron(iii) hydroxide (Fe(OH)3). The effect of adsorption and sunlight exposure on the survival of MS2 was considered. On a mass basis, all particles exhibited a similar virus adsorption capacity, whereas the rate of adsorption followed the order FeOOH > Fe2O3 > Fe3O4 ≈ Fe(OH)3. This adsorption behavior could not be explained by electrostatic considerations; instead, adsorption must be governed by other factors, such as hydrophobic interactions or van der Waals forces. Adsorption to three of the particles investigated (α-FeOOH, Fe3O4, Fe(OH)3) caused virus inactivation of 7%, 22%, and 14%, respectively. Exposure of particle-adsorbed viruses to sunlight and H2O2 resulted in efficient additional inactivation, whereas inactivation was negligible for suspended viruses. The observed first-order inactivation rate constants were 6.6 × 10(-2), 8.7 × 10(-2), 0.55 and 1.5 min(-1) for α-FeOOH, α-Fe2O3, Fe3O4 and Fe(OH)3 respectively. In the absence of sunlight or H2O2, no inactivation was observed beyond that caused by adsorption alone, except for Fe3O4, which caused virus inactivation via a dark Fenton-like process. Overall our results demonstrate that heterogeneous Fenton-like processes can both physically remove viruses from water as well as inactivate them via adsorption and via a particle-mediated (photo-)Fenton-like process.

摘要

高级氧化工艺(AOPs)作为一种替代传统消毒方法控制微生物水质的方法已经出现,然而对于病毒在 AOPs 中的命运知之甚少。在这项研究中,我们研究了依赖于铁(氢)氧化物颗粒催化的非均相类芬顿过程的 AOPs 中 MS2 噬菌体的命运。同时考虑了通过吸附到颗粒上来从溶液中物理去除病毒以及真正的失活。在中性 pH 值、含 200mg/L 的四种不同商业铁(氢)氧化物颗粒(具有相似网眼尺寸的赤铁矿(α-Fe2O3)、针铁矿(α-FeOOH)、磁铁矿(Fe3O4)和无定形铁(iii)氢氧化物(Fe(OH)3)的批式反应器中研究了病毒的命运。考虑了吸附和阳光暴露对 MS2 存活的影响。基于质量,所有颗粒都表现出相似的病毒吸附能力,而吸附速率遵循 FeOOH > Fe2O3 > Fe3O4 ≈ Fe(OH)3 的顺序。这种吸附行为不能用静电考虑来解释;相反,吸附必须由其他因素控制,例如疏水相互作用或范德华力。对所研究的三种颗粒(α-FeOOH、Fe3O4、Fe(OH)3)的吸附导致病毒失活分别为 7%、22%和 14%。暴露于颗粒吸附病毒的阳光和 H2O2 导致有效的额外失活,而悬浮病毒的失活可忽略不计。观察到的一级失活速率常数分别为 6.6×10(-2)、8.7×10(-2)、0.55 和 1.5min(-1),用于α-FeOOH、α-Fe2O3、Fe3O4 和 Fe(OH)3。在没有阳光或 H2O2 的情况下,除了 Fe3O4 之外,没有观察到单独吸附以外的失活,Fe3O4 通过暗芬顿样过程导致病毒失活。总体而言,我们的结果表明,非均相类芬顿过程既能通过吸附从水中物理去除病毒,又能通过吸附和颗粒介导的(光)芬顿样过程使病毒失活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验