Suppr超能文献

力与运动的中枢机制——迈向人类运动的计算综合。

Central mechanisms for force and motion--towards computational synthesis of human movement.

机构信息

Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA.

出版信息

Neural Netw. 2012 Dec;36:167-78. doi: 10.1016/j.neunet.2012.09.008. Epub 2012 Sep 24.

Abstract

Anatomical, physiological and experimental research on the human body can be supplemented by computational synthesis of the human body for all movement: routine daily activities, sports, dancing, and artistic and exploratory involvements. The synthesis requires thorough knowledge about all subsystems of the human body and their interactions, and allows for integration of known knowledge in working modules. It also affords confirmation and/or verification of scientific hypotheses about workings of the central nervous system (CNS). A simple step in this direction is explored here for controlling the forces of constraint. It requires co-activation of agonist-antagonist musculature. The desired trajectories of motion and the force of contact have to be provided by the CNS. The spinal control involves projection onto a muscular subset that induces the force of contact. The projection of force in the sensory motor cortex is implemented via a well-defined neural population unit, and is executed in the spinal cord by a standard integral controller requiring input from tendon organs. The sensory motor cortex structure is extended to the case for directing motion via two neural population units with vision input and spindle efferents. Digital computer simulations show the feasibility of the system. The formulation is modular and can be extended to multi-link limbs, robot and humanoid systems with many pairs of actuators or muscles. It can be expanded to include reticular activating structures and learning.

摘要

人体的解剖学、生理学和实验研究可以通过计算合成来补充,以实现人体的所有运动:日常常规活动、运动、舞蹈、艺术和探索活动。这种综合需要对人体的所有子系统及其相互作用有透彻的了解,并允许将已知的知识集成到工作模块中。它还可以确认和/或验证关于中枢神经系统(CNS)工作的科学假设。本文探讨了朝着这个方向迈出的简单一步,即控制约束的力。这需要激动剂拮抗剂肌肉的共同激活。所需的运动轨迹和接触力必须由中枢神经系统提供。脊髓控制涉及到投射到一个肌肉子集上,该子集诱导接触力。在感觉运动皮层中的力投射是通过一个定义明确的神经群体单元来实现的,并在脊髓中通过一个需要来自腱器官输入的标准积分控制器来执行。感觉运动皮层结构扩展到通过具有视觉输入和纺锤体传出神经的两个神经群体单元来引导运动的情况。数字计算机模拟显示了该系统的可行性。该公式是模块化的,可以扩展到具有许多对执行器或肌肉的多连杆肢体、机器人和人形系统。它可以扩展到包括网状激活结构和学习。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验