INRIA-Rennes, Rennes Cedex 35042, France.
IEEE Trans Image Process. 2013 Mar;22(3):980-91. doi: 10.1109/TIP.2012.2226043. Epub 2012 Oct 22.
Scale-invariant feature transform (SIFT) feature has been widely accepted as an effective local keypoint descriptor for its invariance to rotation, scale, and lighting changes in images. However, it is also well known that SIFT, which is derived from directionally sensitive gradient fields, is not flip invariant. In real-world applications, flip or flip-like transformations are commonly observed in images due to artificial flipping, opposite capturing viewpoint, or symmetric patterns of objects. This paper proposes a new descriptor, named flip-invariant SIFT (or F-SIFT), that preserves the original properties of SIFT while being tolerant to flips. F-SIFT starts by estimating the dominant curl of a local patch and then geometrically normalizes the patch by flipping before the computation of SIFT. We demonstrate the power of F-SIFT on three tasks: large-scale video copy detection, object recognition, and detection. In copy detection, a framework, which smartly indices the flip properties of F-SIFT for rapid filtering and weak geometric checking, is proposed. F-SIFT not only significantly improves the detection accuracy of SIFT, but also leads to a more than 50% savings in computational cost. In object recognition, we demonstrate the superiority of F-SIFT in dealing with flip transformation by comparing it to seven other descriptors. In object detection, we further show the ability of F-SIFT in describing symmetric objects. Consistent improvement across different kinds of keypoint detectors is observed for F-SIFT over the original SIFT.
尺度不变特征变换(SIFT)特征已被广泛接受为一种有效的局部关键点描述符,因为它对图像中的旋转、缩放和光照变化具有不变性。然而,众所周知,SIFT 是从方向敏感的梯度场中派生出来的,它不是翻转不变的。在实际应用中,由于人工翻转、相反的拍摄视角或物体的对称模式,图像中经常观察到翻转或类似翻转的变换。本文提出了一种新的描述符,称为翻转不变 SIFT(或 F-SIFT),它在保持 SIFT 原有特性的同时,能够容忍翻转。F-SIFT 首先估计局部补丁的主导卷曲,然后在计算 SIFT 之前通过翻转对补丁进行几何归一化。我们在三个任务上展示了 F-SIFT 的强大功能:大规模视频复制检测、目标识别和检测。在复制检测中,提出了一种框架,该框架巧妙地索引了 F-SIFT 的翻转属性,以实现快速过滤和弱几何检查。F-SIFT 不仅显著提高了 SIFT 的检测精度,而且还节省了超过 50%的计算成本。在目标识别中,我们通过与其他七个描述符进行比较,证明了 F-SIFT 在处理翻转变换方面的优越性。在目标检测中,我们进一步展示了 F-SIFT 在描述对称物体方面的能力。与原始 SIFT 相比,F-SIFT 在各种关键点检测器上都表现出了一致的改进。