Institute of Electrical Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne Switzerland.
IEEE Trans Image Process. 2012 May;21(5):2412-23. doi: 10.1109/TIP.2012.2185937. Epub 2012 Jan 27.
We propose a method to compute scale-invariant features in omnidirectional images. We present a formulation based on the Riemannian geometry for the definition of differential operators on non-Euclidian manifolds that adapt to the mirror and lens structures in omnidirectional imaging. These operators lead to a scale-space analysis that preserves the geometry of the visual information in omnidirectional images. We then build a novel scale-invariant feature detection framework for omnidirectional images that can be mapped on the sphere. We further present a new descriptor and feature matching solution for these omnidirectional images. The descriptor builds on the log-polar planar descriptors and adapts the descriptor computation to the specific geometry and the nonuniform sampling density of omnidirectional images. We also propose a rotation-invariant matching method that eliminates the orientation computation during the feature detection phase and thus decreases the computational complexity. Experimental results demonstrate that the new feature computation method combined with the adapted descriptors offers promising detection and matching performance, i.e., it improves on the common scale-invariant feature transform (SIFT) features computed on the unwrapped omnidirectional images, as well as spherical SIFT features. Finally, we show that the proposed framework also permits to match features between images with different native geometry.
我们提出了一种计算全向图像中尺度不变特征的方法。我们提出了一种基于黎曼几何的微分算子定义,用于在非欧几里得流形上定义微分算子,这些算子适应了全向成像中的镜面和透镜结构。这些算子导致了一种尺度空间分析,该分析保持了全向图像中视觉信息的几何形状。然后,我们构建了一种新的用于全向图像的尺度不变特征检测框架,可以将其映射到球面上。我们进一步提出了一种新的描述符和特征匹配解决方案,用于这些全向图像。描述符基于对数极坐标平面描述符构建,并将描述符计算适应于全向图像的特定几何形状和非均匀采样密度。我们还提出了一种旋转不变的匹配方法,该方法在特征检测阶段消除了方向计算,从而降低了计算复杂度。实验结果表明,新的特征计算方法与适应的描述符相结合,提供了有前途的检测和匹配性能,即它提高了在展开的全向图像上计算的常见尺度不变特征变换(SIFT)特征,以及球面 SIFT 特征的性能。最后,我们表明所提出的框架还允许在具有不同固有几何形状的图像之间匹配特征。