Suppr超能文献

基于谱分解和非正交滤波器组的多尺度图像融合的非抽样小波变换。

Multiscale image fusion using the undecimated wavelet transform with spectral factorization and nonorthogonal filter banks.

机构信息

PEE/COPPE/DEL, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

出版信息

IEEE Trans Image Process. 2013 Mar;22(3):1005-17. doi: 10.1109/TIP.2012.2226045. Epub 2012 Oct 22.

Abstract

Multiscale transforms are among the most popular techniques in the field of pixel-level image fusion. However, the fusion performance of these methods often deteriorates for images derived from different sensor modalities. In this paper, we demonstrate that for such images, results can be improved using a novel undecimated wavelet transform (UWT)-based fusion scheme, which splits the image decomposition process into two successive filtering operations using spectral factorization of the analysis filters. The actual fusion takes place after convolution with the first filter pair. Its significantly smaller support size leads to the minimization of the unwanted spreading of coefficient values around overlapping image singularities. This usually complicates the feature selection process and may lead to the introduction of reconstruction errors in the fused image. Moreover, we will show that the nonsubsampled nature of the UWT allows the design of nonorthogonal filter banks, which are more robust to artifacts introduced during fusion, additionally improving the obtained results. The combination of these techniques leads to a fusion framework, which provides clear advantages over traditional multiscale fusion approaches, independent of the underlying fusion rule, and reduces unwanted side effects such as ringing artifacts in the fused reconstruction.

摘要

多尺度变换是像素级图像融合领域中最流行的技术之一。然而,对于来自不同传感器模式的图像,这些方法的融合性能往往会下降。在本文中,我们证明对于此类图像,可以使用基于新的非抽取小波变换 (UWT) 的融合方案来提高结果,该方案将图像分解过程分为使用分析滤波器的谱分解进行的两个连续滤波操作。实际的融合在与第一滤波器对卷积后发生。它的支持大小明显较小,导致系数值在重叠图像奇异点周围的不必要扩展最小化。这通常会使特征选择过程复杂化,并可能导致融合图像中引入重建误差。此外,我们将展示 UWT 的非抽取性质允许设计非正交滤波器组,这对融合过程中引入的伪影更稳健,从而进一步改善获得的结果。这些技术的结合导致融合框架,与基础融合规则无关,与传统的多尺度融合方法相比具有明显的优势,并减少了融合重建中的振铃伪影等不必要的副作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验