Suppr超能文献

基于尺度不变特征变换(SIFT)的改进型特征点对提纯算法在内窥镜图像拼接中的应用

Improved Feature Point Pair Purification Algorithm Based on SIFT During Endoscope Image Stitching.

作者信息

Liu Yan, Tian Jiawei, Hu Rongrong, Yang Bo, Liu Shan, Yin Lirong, Zheng Wenfeng

机构信息

School of Automation, University of Electronic Science and Technology of China, Chengdu, China.

Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA, United States.

出版信息

Front Neurorobot. 2022 Feb 15;16:840594. doi: 10.3389/fnbot.2022.840594. eCollection 2022.

Abstract

Endoscopic imaging plays a very important role in the diagnosis and treatment of lesions. However, the imaging range of endoscopes is small, which may affect the doctors' judgment on the scope and details of lesions. Image mosaic technology can solve the problem well. In this paper, an improved feature-point pair purification algorithm based on SIFT (Scale invariant feature transform) is proposed. Firstly, the K-nearest neighbor-based feature point matching algorithm is used for rough matching. Then RANSAC (Random Sample Consensus) method is used for robustness tests to eliminate mismatched point pairs. The mismatching rate is greatly reduced by combining the two methods. Then, the image transformation matrix is estimated, and the image is determined. The seamless mosaic of endoscopic images is completed by matching the relationship. Finally, the proposed algorithm is verified by real endoscopic image and has a good effect.

摘要

内镜成像在病变的诊断和治疗中起着非常重要的作用。然而,内镜的成像范围较小,这可能会影响医生对病变范围和细节的判断。图像拼接技术可以很好地解决这个问题。本文提出了一种基于尺度不变特征变换(SIFT)的改进型特征点对提纯算法。首先,使用基于K近邻的特征点匹配算法进行粗匹配。然后,采用随机抽样一致性(RANSAC)方法进行稳健性测试,以消除不匹配的点对。将这两种方法结合使用,大大降低了不匹配率。接着,估计图像变换矩阵,并确定图像。通过匹配关系完成内镜图像的无缝拼接。最后,通过真实的内镜图像对所提算法进行验证,效果良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc4e/8886433/db0a85227d14/fnbot-16-840594-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验