Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.
PLoS Pathog. 2012;8(11):e1002993. doi: 10.1371/journal.ppat.1002993. Epub 2012 Nov 8.
Protein phosphorylation is a common post-translational modification in eukaryotic cells and has a wide range of functional effects. Here, we used mass spectrometry to search for phosphorylated residues in all the proteins of influenza A and B viruses--to the best of our knowledge, the first time such a comprehensive approach has been applied to a virus. We identified 36 novel phosphorylation sites, as well as confirming 3 previously-identified sites. N-terminal processing and ubiquitination of viral proteins was also detected. Phosphorylation was detected in the polymerase proteins (PB2, PB1 and PA), glycoproteins (HA and NA), nucleoprotein (NP), matrix protein (M1), ion channel (M2), non-structural protein (NS1) and nuclear export protein (NEP). Many of the phosphorylation sites detected were conserved between influenza virus genera, indicating the fundamental importance of phosphorylation for all influenza viruses. Their structural context indicates roles for phosphorylation in regulating viral entry and exit (HA and NA); nuclear localisation (PB2, M1, NP, NS1 and, through NP and NEP, of the viral RNA genome); and protein multimerisation (NS1 dimers, M2 tetramers and NP oligomers). Using reverse genetics we show that for NP of influenza A viruses phosphorylation sites in the N-terminal NLS are important for viral growth, whereas mutating sites in the C-terminus has little or no effect. Mutating phosphorylation sites in the oligomerisation domains of NP inhibits viral growth and in some cases transcription and replication of the viral RNA genome. However, constitutive phosphorylation of these sites is not optimal. Taken together, the conservation, structural context and functional significance of phosphorylation sites implies a key role for phosphorylation in influenza biology. By identifying phosphorylation sites throughout the proteomes of influenza A and B viruses we provide a framework for further study of phosphorylation events in the viral life cycle and suggest a range of potential antiviral targets.
蛋白质磷酸化是真核细胞中一种常见的翻译后修饰,具有广泛的功能效应。在这里,我们使用质谱法搜索了甲型和乙型流感病毒所有蛋白质中的磷酸化残基——据我们所知,这是首次将这种全面的方法应用于病毒。我们鉴定了 36 个新的磷酸化位点,同时也确认了 3 个先前鉴定的位点。还检测到病毒蛋白的 N 端加工和泛素化。聚合酶蛋白(PB2、PB1 和 PA)、糖蛋白(HA 和 NA)、核蛋白(NP)、基质蛋白(M1)、离子通道(M2)、非结构蛋白(NS1)和核输出蛋白(NEP)中都检测到了磷酸化。在流感病毒属之间检测到的许多磷酸化位点是保守的,这表明磷酸化对所有流感病毒都具有重要意义。它们的结构背景表明磷酸化在调节病毒进入和退出(HA 和 NA)、核定位(PB2、M1、NP、NS1 和通过 NP 和 NEP 的病毒 RNA 基因组)以及蛋白质多聚化(NS1 二聚体、M2 四聚体和 NP 寡聚体)中发挥作用。通过反向遗传学,我们表明对于甲型流感病毒的 NP,NLS 中的 N 端磷酸化位点对于病毒的生长很重要,而 C 端的突变位点几乎没有影响。突变寡聚化结构域中的磷酸化位点会抑制病毒的生长,在某些情况下还会抑制病毒 RNA 基因组的转录和复制。然而,这些位点的组成性磷酸化并不是最佳的。综上所述,磷酸化位点的保守性、结构背景和功能意义表明磷酸化在流感生物学中起着关键作用。通过鉴定甲型和乙型流感病毒的蛋白质组中的磷酸化位点,我们为进一步研究病毒生命周期中的磷酸化事件提供了一个框架,并提出了一系列潜在的抗病毒靶点。