Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.
PLoS One. 2012;7(11):e46900. doi: 10.1371/journal.pone.0046900. Epub 2012 Nov 7.
Skeletal abnormalities including osteoporosis and osteopenia occur frequently in both pediatric and adult neurofibromatosis type 1 (NF1) patients. NF1 (Nf1) haploinsufficient osteoclasts and osteoclast progenitors derived from both NF1 patients and Nf1(+/-) mice exhibit increased differentiation, migration, and bone resorptive capacity in vitro, mediated by hyperactivation of p21(Ras) in response to limiting concentrations of macrophage-colony stimulating factor (M-CSF). Here, we show that M-CSF binding to its receptor, c-Fms, results in increased c-Fms activation in Nf1(+/) (-) osteoclast progenitors, mediating multiple gain-in-functions through the downstream effectors Erk1/2 and p90RSK. PLX3397, a potent and selective c-Fms inhibitor, attenuated M-CSF mediated Nf1(+/-) osteoclast migration by 50%, adhesion by 70%, and pit formation by 60%. In vivo, we administered PLX3397 to Nf1(+/-) osteoporotic mice induced by ovariectomy (OVX) and evaluated changes in bone mass and skeletal architecture. We found that PLX3397 prevented bone loss in Nf1(+/-)-OVX mice by reducing osteoclast differentiation and bone resorptive activity in vivo. Collectively, these results implicate the M-CSF/c-Fms signaling axis as a critical pathway underlying the aberrant functioning of Nf1 haploinsufficient osteoclasts and may provide a potential therapeutic target for treating NF1 associated osteoporosis and osteopenia.
骨骼异常包括骨质疏松症和低骨量症,在儿科和成人 1 型神经纤维瘤病(NF1)患者中均很常见。NF1(Nf1)单倍不足的破骨细胞和破骨细胞前体细胞来自 NF1 患者和 Nf1(+/-) 小鼠,在体外表现出分化、迁移和骨吸收能力增强,这是由巨噬细胞集落刺激因子(M-CSF)浓度限制下 p21(Ras) 的过度激活介导的。在这里,我们表明 M-CSF 与其受体 c-Fms 的结合导致 Nf1(+/-) 破骨细胞前体细胞中 c-Fms 的激活增加,通过下游效应物 Erk1/2 和 p90RSK 介导多种功能获得。PLX3397 是一种有效的、选择性的 c-Fms 抑制剂,可使 M-CSF 介导的 Nf1(+/-) 破骨细胞迁移减少 50%,粘附减少 70%,陷窝形成减少 60%。在体内,我们给去卵巢(OVX)诱导的 Nf1(+/-) 骨质疏松小鼠施用 PLX3397,并评估骨量和骨骼结构的变化。我们发现 PLX3397 通过减少体内破骨细胞分化和骨吸收活性,预防了 Nf1(+/-)-OVX 小鼠的骨丢失。总之,这些结果表明 M-CSF/c-Fms 信号轴是 Nf1 单倍不足破骨细胞异常功能的关键途径,并可能为治疗 NF1 相关骨质疏松症和低骨量症提供潜在的治疗靶点。